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ABSTRACT

Cyber threat intelligence (CTI) is central to modern cybersecurity, providing crit-
ical insights for detecting and mitigating evolving threats. With the natural lan-
guage understanding and reasoning capabilities of large language models (LLMs),
there is increasing interest in applying them to CTI, which calls for benchmarks
that can rigorously evaluate their performance. Several early efforts have studied
LLMs on some CTI tasks but remain limited: (i) they adopt only closed-book set-
tings, relying on parametric knowledge without leveraging CTI knowledge bases;
(ii) they cover only a narrow set of tasks, lacking a systematic view of the CTI
landscape; and (iii) they restrict evaluation to single-source analysis, unlike real-
istic scenarios that require reasoning across multiple sources. To fill these gaps, we
present CTIARENA, the first benchmark for evaluating LLM performance on het-
erogeneous, multi-source CTI under knowledge-augmented settings. CTIARENA
spans three categories, structured, unstructured, and hybrid, further divided into
nine tasks that capture the breadth of CTI analysis in modern security operations.
We evaluate ten widely used LLMs and find that most struggle in closed-book se-
tups but show noticeable gains when augmented with security-specific knowledge
through our designed retrieval-augmented techniques. These findings highlight
the limitations of general-purpose LLMs and the need for domain-tailored tech-
niques to fully unlock their potential for CTI.

D Code https://github.com/peng-gao-lab/CTIArena

1 INTRODUCTION

The evolving cyberspace landscape has led to unprecedented growth in cyber attacks, posing signif-
icant challenges for organizations worldwide. Cyber threat intelligence (CTI) plays a central role
in enabling timely defense against such threats and is widely used in both detection and response
operations. Open-source CTI refers to publicly available intelligence shared by security vendors
and communities to inform practitioners of existing and emerging threats. A defining characteris-
tic of CTI is its heterogeneous and multi-source knowledge structure. Common open-source CTI
resources include authoritative taxonomies such as CVE (Program, 2025), CWE (MITRE, [2025b),
CAPEC (MITRE; 2025a)), and MITRE ATT&CK (MITRE] 2025c¢)), which catalog vulnerabilities,
weaknesses, and adversary behaviors in structured formats, as well as vendor reports and blogs that
document ongoing threat events with rich contextual detail. Collectively, these sources provide a
rich yet fragmented knowledge base, whose heterogeneity and dispersion present major challenges
for knowledge management, integration, and application. With the rapid advancement of large lan-
guage models (LLMs), there is growing interest in their potential to synthesize, interpret, and reason
over this complex intelligence landscape. This motivates the central question of this work: 7o what
extent can LLMs effectively reason over heterogeneous, multi-source CTI, and does incorporating
CTlI-specific knowledge augmentation improve their performance?

A few preliminary efforts have explored the capacity of LLMs for CTI reasoning, and these remain
very limited in scope and setup. CTIBench (Alam et al., 2025), published at NeurIPS 2024, covers
four tasks (root cause mapping, vulnerability severity prediction, attack technique extraction, and
threat actor attribution) under a closed-book setting where models rely solely on parametric knowl-
edge. SEvenLLLM (Ji et al.,[2024])) introduces a bilingual instruction corpus and benchmark tailored to


https://github.com/peng-gao-lab/CTIArena

Table I: Comparison of task coverage between CTIARENA and existing major CTI benchmarks,
CTIBench (Alam et al., 2025) and SEvenLLLM (Ji et al.| 2024).

Task Example Question Example Answer CTIBench  SevenLLM Ours
CTI-RCM: Which CWE is the root cause of CWE-78 (Improper neutralization of v X v
Root Cause CVE-2025-52988? special elements in OS command) is the
Mapping root cause of CVE-2025-52988, which
allows unsanitized CLI arguments to
enable OS command injection.
CTI-WIM: Which CVE instantiates CWE-192 CVE-2022-2639 demonstrates an integer X X v
Weakness (Integer Coercion Error)? coercion error via incorrect size
Instantiation reservation, instantiating CWE-192.
Mapping
CTI-ATD: Which MITRE ATT&CK technique T1499.004 corresponds to exploitation of v X v
Attack maps to CAPEC-25 (Forced deadlock causing denial of service,
Technique Deadlock)? mapping CAPEC-25.
Derivation
CTI-ESD: Which CAPEC attack pattern exploits CAPEC-597 exploits use of file system X X v
Exploitation the Absolute Path Traversal weakness absolute paths to access unauthorized
Surface (CWE-36)? files, targeting CWE-36.
Discovery
CTI-MLA: I recently read a blog on the BlackCat - BlackCat X v v
Malware Malware. What are all the distinct - Munchkin
Lineage malware variant names mentioned - ExMatter
Analysis across existing threat intelligence? - COBEACON
CTI-TAP: 1 recently read a blog on the - Canonical Threat Actor Name: RansomHub v/ v v
Threat Actor RansomHub Threat Actor. What is the - Known Alias: Greenbottle
Profiling canonical threat actor name, resolving
any aliases mentioned across existing
threat intelligence ?
CTI-CSC: 1 recently read a blog on the Silent - Regions: Asia-Pacific (APAC), North X X v
Campaign Skimming Campaign. What are the America, Latin America
Storyline R I3 rimqr)' target indusltrifzs or regions - Industries: e-commerce platforms, online
Construction mentioned across existing threat sment and point-of-sal P‘ s)
intelligence? payment and point-of-sale (PoS) servers
CTI-VCA: 1 recently read in a security blog: “The - CWE-284: Improper Access Control. X X v
Vulnerability ransomware’s effectiveness is partly - The described ransomware exploits
Cata}logA ‘,1“8 10 the poor isolatio n'uAnd inadequate privilege and process permission
Attribution inadequate control of privileges on R .
S . . controls, allowing attackers to terminate
victim systems. ... Please identify the . X i
CWE category that maps to this security services and move laterally, which
vulnerabilit)t;’ directly aligns with CWE-284’s definition.
CTI-ATA: As I recently read in a security blog: - T1114.001 (Local Email Collection). X X v

Attack “The tool allows the threat actors to

Technique extract emails from Yahoo!, Google,

Attribution and Microsoft Outlook... Which
MITRE ATT&CK technique category
does this behavior map to?”

- Hyperspace accesses and extracts email
messages stored locally, aligning with
T1114.001’s definition

incident analysis, but is restricted to small instruction-tuned models on unstructured CTI such as ven-
dor reports and blogs. Both benchmarks exhibit three major limitations. First, narrow task scope:
CTIBench covers only four isolated tasks, while SEvenLLM is confined to unstructured reports,
leaving other CTTI tasks and sources unexplored. Second, limited evaluation setup: CTIBench tests
only five models in prompting-only mode, and SEvenL.LLM considers only small instruction-tuned
models, excluding frontier LLMs. Third, lack of realism: both adopt closed-book configurations,
without leveraging existing CTI knowledge bases via retrieval-augmented methods, and both restrict
inputs to a single source, whereas real-world threat analysis in security operation centers (SOCs) typ-
ically requires correlating heterogeneous evidence across reports and taxonomies (ThreatConnect,
Inc., 2018). CTIBench is also limited in scale, with only about 150 manually annotated queries,
making it infeasible to extend to emerging threats.

These limitations motivate our design of CTIARENA, which offers broader task coverage, realis-
tic evaluation setups, and scalable benchmark construction. CTIARENA is a principled benchmark
suite for evaluating LLMs on heterogeneous, multi-source CTI. Unlike prior benchmarks that target
a few isolated tasks with prompting-only setups, CTIARENA systematically maps the CTI analy-
sis landscape into nine representative tasks across three categories, reflecting major forms of CTI
that security analysts must integrate in practice. As shown in Structured tasks involve
reasoning over authoritative taxonomies such as CVE (Program, [2025), CWE (MITREI 2025b),
CAPEC (MITRE; 2025a), and MITRE ATT&CK (MITRE, 2025c), which catalog vulnerabilities,



weaknesses, and adversary techniques in structured formats. Unstructured tasks draw on vendor
reports and blogs, where analysts must interpret narrative descriptions of adversaries, campaigns,
and malware families. Hybrid tasks link structured enumerations with unstructured narratives, re-
flecting practical threat analysis workflows where enumerations are used to attribute actors, analyze
malware lineage, and validate campaign activity. Together, these nine tasks are principled in design
to cover the core workflows that threat analysts routinely perform in SOCs, such as mapping vul-
nerabilities to weaknesses, attributing adversary behavior to ATT&CK techniques, profiling actors,
tracing malware evolution, and correlating multi-report campaigns.

Table I summarizes the nine tasks with example question—answer (QA) pairs (more details in
tion 3.3). The benchmark was constructed through a three-stage pipeline consisting of factually-
grounded QA generation via carefully designed task-specific LLM prompt templates, LLM judge
filtering to remove low-quality samples, and human expert cross-verification to ensure the final qual-
ity (see for details). Each entry includes a natural-language question, a gold-standard
answer, and supporting evidence drawn from either structured repositories or unstructured reports.
The final benchmark comprises 691 QA pairs: 371 structured, 150 unstructured, and 170 hybrid.

We evaluate ten representative LLMs, including four open-source and six proprietary systems, under
both closed-book and knowledge-augmented settings. Beyond two generic baselines, inference-time
knowledge injection and vanilla retrieval-augmented generation (RAG), we introduce two security-
specific retrieval-augmentation techniques explicitly tailored to the structure and semantics of CTI
knowledge, going beyond generic semantic similarity. The first, CSKG-guided RAG, leverages a
curated Cyber Security Knowledge Graph to retrieve evidence based on entity-level overlaps (e.g.,
shared actors, malware, or ATT&CK techniques). The second, RAG with attack-behavior decom-
position, reformulates narrative inputs into fine-grained behaviors (tactics, techniques, and affected
components) aligned with security taxonomies, thereby closing the gap between varied phrasings in
reports and standardized terminology in CTI frameworks. Our results show that closed-book infer-
ence is severely limited. While generic knowledge augmentation brings substantial gains, security-
tailored retrieval further improves performance, particularly on hybrid and unstructured tasks where
vanilla semantic search struggles to align free text with formal CTI domain taxonomies. We also
analyzed the failure modes of these baselines, revealing how inappropriate evidence can mislead
models and pointing to directions for more robust augmentation (see and {.3). To-
gether, these findings highlight that scaling model size alone is insufficient; systematic progress in
CTI requires knowledge-augmented LLMs equipped with domain-specific retrieval strategies.

2 RELATED WORK

LLM for CTI Analysis. LLMs have seen growing application in CTI analysis. Early work focused
on extracting structured information from narrative reports, such as tactics, techniques, and proce-
dures (TTP) (Cuong Nguyen et al.| 2025} |Xu et al.,[2024) and STIX bundle generation (Siracusano
et al.| 2023). Later studies moved from entity extraction to relation modeling, enabling the construc-
tion of cybersecurity knowledge graphs (Cheng et al.||2025; |[Huang & Xiao| 2024). However, these
approaches remain narrow in scope: they typically operate on individual unstructured reports, target
only limited task families, and lack systematic adaptation and evaluation across heterogeneous CTI
sources like structured repositories.

CTI Benchmarks. Although LLM benchmarks have proliferated in general NLP, only a few have
targeted the CTI domain. CTIBench (Alam et al.| [2025) was a notable effort, evaluating LLMs on
four tasks: root cause mapping, vulnerability severity prediction, attack technique extraction, and
threat actor attribution. However, these tasks capture only a narrow slice of the CTI analysis land-
scape. CTIBench also evaluated only a few models under closed-book settings, relying solely on
parametric knowledge without retrieval or augmentation. Its dataset was manually curated at small
scale, making it difficult to extend to emerging threats. Another effort, SEvenLLM (Ji et al., |2024),
introduced SEvenLLM-Bench, a bilingual multi-task dataset covering 28 CTI-related tasks (13 un-
derstanding and 15 generation). While the task count appears large, the scope remains narrow: the
benchmark is restricted to unstructured CTI reports, focusing primarily on single-report extraction
and summarization. Its evaluation is also limited to instruction-tuned small models (<14B parame-
ters), excluding frontier LLMs that may exhibit stronger reasoning capabilities.

LLM for Cybersecurity. Recent studies have also explored the use of LLMs in a range of cyber-
security challenges outside CTI. PentestGPT (Deng et al., 2023)) explores their role in penetration
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Fig. 1: Each CTI task in CTTARENA is created through a three-stage construction process. The task
quality is controlled by the human-LLM collaboration.

testing, showing that while LLMs can handle fundamental tasks and operate testing tools effectively,
they struggle with context retention and attention management. Beyond penetration testing, LLMs
have also been investigated for vulnerability detection (Fang et al., [2024; [Lu et al.| 2024]), software
repair (Kulsum et al. |[2024), fuzz testing (Xia et al.| [2024; Meng et al.| [2024), phishing and scam
detection (Jiang}2024;|Lee et al.,[2024)), and DDoS detection (Li et al., 2024;|Guastalla et al.,|[2023)).

3 CTIARENA DESIGN

3.1 PRIMER ON CYBER THREAT INTELLIGENCE

Open-source CTI can be broadly categorized into structured and unstructured intelligence.

Structured CTI serves as a standardized knowledge base of vulnerabilities, weaknesses, and ad-
versary behaviors, typically organized into three types: vulnerability intelligence, weakness in-
telligence, and adversary behavior intelligence. CVE (Programl| 2025) catalogs vulnerabili-
ties with identifiers, references, and severity scores. CWE (MITRE/ [2025b)) captures recurring
weakness types to address root causes early in design. Adversary behavior is documented in
CAPEC (MITRE! 2025a), which enumerates recurring attack patterns (e.g., SQL injection), and
MITRE ATT&CK (MITRE! [2025c)), which maps tactics and techniques observed in real intrusions
across the attack lifecycle. CAPEC emphasizes application-level patterns, while ATT&CK captures
operational adversary behaviors. Further details are provided in

Unstructured CTI refers to narrative intelligence in vendor reports and blogs (e.g., Trend Micro,
Unit 42, CrowdStrike). These sources describe adversary activities with rich context: actors, mal-
ware, campaigns, TTPs, IoCs, and mitigations, providing timely insights into emerging threats. Yet
their free-text format makes systematic management and cross-report correlation more challenging.

3.2 BENCHMARK CONSTRUCTION PIPELINE

Given the scale and diversity of CTI tasks, fully manual annotation is impractical, and naive LLM
generation risks hallucination. We therefore adopt a three-stage LLM-based pipeline (illustrated in
IFig. 1)) that grounds data in authoritative references and enforces quality control throughout.

Stage 1: Seed Correlation Annotation: We collect high-quality correlations among CTI sources
as ground truth for dataset generation. For structured CTI, we extract mappings from authorita-
tive repositories (e.g., CVESCWE, CWE—CAPEC, CAPEC—ATT&CK), which are designed to
interoperate: CVEs record vulnerabilities, CWEs their root causes, CAPEC exploitation patterns,
and ATT&CK adversary tactics and techniques. These are organized into the StructuredMapping
dataset. For unstructured CTI, we cluster vendor reports by adversary type (threat actors, malware,
campaigns) into the BlogCluster dataset, resolving aliases and verifying topic consistency (details
in[Section E)). Finally, we construct the B2F (Blog-to-Framework) dataset by aligning key phrases in
blogs with structured taxonomies. Two annotators independently highlight phrases and map them to
authoritative entries, cross-check their results, and resolve disagreements with a senior adjudicator.
Together, these seed datasets anchor our pipeline with authoritative references (see[Section 3.3).

Stage 2: Factually-Grounded QA Pair Synthesis: We transform the annotated seed correlations
into task-specific QA pairs using template-constrained generation. Each correlation is represented
as a subject—object pair (e.g., CVE-CWE). Prompt templates then guide the LLM, specifying (i)



the task-specific instruction, (ii) the input entity (subject), (iii) the expected output entity (object),
and (iv) the required QA format. By grounding prompts in verified correlations and constraining
outputs with templates, the LLM produces QA pairs that are directly linked to authoritative sources,
reducing hallucination and ensuring consistency across tasks. Representative prompt templates for

all task families are provided in

Stage 3: LLM—Human Collaborative Curation: The final stage enforces multi-layered quality con-
trol on the synthesized QA pairs. We first implement an LLM-based judge with GPT-5 as the back-
bone, guided by a structured rubric (Appendix [D.2) that evaluates factual correctness, grounding in
source evidence, clarity of language, and consistency with the task definition. Samples flagged as
low-confidence or inconsistent are discarded, while high-confidence outputs are retained for further
validation. Next, two cybersecurity practitioners with over two years of hands-on CTI analysis expe-
rience independently answer the LLM-generated questions and cross-check their responses. Finally,
a senior annotator with more than three years of professional CTI expertise conducts a final review
to ensure that the retained QA pairs are factually accurate, unambiguous, and faithful to the intended
task design. This collaborative design, which combines scalable LLM-based filtering with rigorous
expert validation, consolidates the synthesized QA data into a final, verified benchmark dataset.

3.3 TASK DESIGN

3.3.1 STRUCTURED CTI REASONING

Structured CTI reasoning tasks evaluate whether LLMs can infer correlations among security tax-
onomies (CVE, CWE, CAPEC, MITRE ATT&CK). For example, a CVE may stem from a CWE,
be exploited via a CAPEC pattern, and map to an ATT&CK technique. Automating such reasoning
reduces the manual burden on analysts and supports more timely, systematic defenses.

CTI-RCM (Root Cause Mapping). This task maps a vulnerability in CVE to its root cause in
CWE. For example, CVE-2021-44228 (Log4Shell) maps to CWE-20 (Improper Input Validation).
Identifying such root causes enables proactive defense by addressing weaknesses at design time.

CTI-WIM (Weakness Instantiation Mapping). This task links a weakness in CWE to a CVE
that instantiates it. For example, CWE-79 (Improper Input Neutralization) is instantiated by CVE-
2021-40444 in Microsoft Office, which allows malicious ActiveX controls via crafted documents.
This enables defenders to assess the prevalence and impact of weaknesses across deployed systems,
informing prioritization and patching strategies.

CTI-ATD (Attack Technique Derivation). This task maps an attack pattern in CAPEC to the cor-
responding tactics and techniques in MITRE ATT&CK. For instance, CAPEC-66 (SQL Injection)
corresponds to ATT&CK technique T1190 (Exploit Public-Facing Application). This helps link
abstract design-level attack classes to specific tactics and techniques that adversaries employ.

CTI-ESD (Exploitation Surface Discovery). This task links weaknesses in CWE to attack patterns
in CAPEC, showing how a weakness can be exploited. For example, CWE-352 (Cross-Site Request
Forgery) is associated with CAPEC-111 (CSRF Attack). This helps link software weakness to
exploitation methods, enabling analysts to anticipate attack vectors and prioritize mitigations.

Dataset. We curated the StructuredMapping Dataset, which contains 500 high-quality mappings
that explicitly connect entities across structured CTI frameworks (e.g., CVE—-CWE, CWE—CVE,
CAPEC—ATT&CK, CWE—CAPEC). Building on this resource, we applied our dataset construc-
tion pipeline (see[Section 3.2)) to derive the SK (Structured Knowledge) Dataset, comprising 371
QA pairs in total: 100 instances for CTI-RCM, 71 for CTI-WIM, 100 for CTI-ATD, and 100 for

CTI-ESD. Data examples are provided in

3.3.2 THREAT REPORT UNDERSTANDING

Unstructured CTI tasks evaluate whether LLMs can extract and synthesize adversary-centric in-
sights from narrative threat reports. These tasks are crucial as reports provide timely, context-rich
intelligence, yet their free-text format makes cross-source analysis challenging.

CTI-CSC (Campaign Storyline Construction). This task reconstructs the storyline of an attack
campaign including exploited vulnerabilities, adversary tools and infrastructure, progression of ac-



tivities (e.g., lateral movement, persistence, exfiltration), and targeted industries or regions. For
instance, separate reports might respectively describe a spear-phishing lure, an exploit of a public-
facing service, and subsequent data exfiltration targeting financial institutions on the same compaign.

CTI-TAP (Threat Actor Profiling). This task construct the profile of a threat actor, including its
known aliases, attributed malware/toolsets, observed TTPs, and targeted industries or regions. For
example, reports about APT29 actor may separately mention credential harvesting, Cobalt Strike
usage, or campaigns against government organizations.

CTI-MLA (Malware Lineage Analysis). This task trace the lineage of a malware family, including
successive variants, code modifications, persistence or delivery mechanisms, reused components,
and relationships to other families or toolsets. For example, multiple reports may describe successive
variants of the Emotet malware, each introducing new persistence mechanisms or delivery vectors.

Dataset & Corpus. We collected 321 CTI reports from 35 major threat intelligence vendors,
including Trend Micro (Trend Micro, 2025), Unit 42 (Palo Alto Networks| [2025)), and Crowd-
Strike (CrowdStrikel, [2025)); the full vendor list and report distribution are provided in
Reports were categorized into threat actors, malware, and campaigns, and aggregated into clusters
of reports sharing a common adversary focus. This yielded the BlogCluster Dataset, consisting of
50 expert-annotated clusters of CTI reports. Within each cluster, reports were ordered chronologi-
cally: the most recent report was used as the query input for evaluation tasks, while the remaining
formed the retrieval corpus. Through our dataset construction pipeline we derived the
UK (Unstructured Knowledge) Dataset, including 60 instances for CTI-CSC, 60 for CTI-TAP,
and 30 for CTI-MLA. Illustrative examples are provided in

3.3.3 STRUCTURED AND UNSTRUCTURED CTI MAPPING

Hybrid CTI tasks evaluate whether LLMs can bridge descriptions in threat reports with structured
CTI taxonomies. This helps analysts connect free-text observations with standardized knowledge
bases to analyze attack trends, identify underlying weaknesses, and determine possible mitigations.

CTI-ATA (Attack Technique Attribution). This task identifies attack behaviors in narrative reports
that can be mapped to MITRE ATT&CK techniques. For example, if a report states that an adversary
“used PowerShell scripts to download additional payloads”, the model should map this behavior to
ATT&CK technique T1059.001 (PowerShell).

CTI-VCA (Vulnerability Catalog Attribution). This task detects descriptions of vulnerable con-
ditions in reports and correlates them with CWE entries that capture the underlying weakness. For
instance, if a report mentions “unsanitized user input in a web form leading to code execution”, the
model should map this to CWE-20 (Improper Input Validation).

Dataset. We sampled 150 reports for paragraph-level analysis to identify latent weaknesses and
ATT&CK techniques described in text. Two annotators conducted independent annotations, while
a third annotator served as an arbiter to verify correctness, resolve disagreements, and filter out
controversial or ambiguous cases. This yields B2F (Blog-to-Framework) Dataset [Section B.1] con-
taining 120 report-to-CWE mappings and 50 report-to-ATT&CK mappings. We applied our dataset
construction pipeline (see to derive the HK (Hybrid Knowledge) Dataset, comprising
120 instances for CTI-VCA and 50 for CTI-ATA. Data examples are provided in

4 EXPERIMENTS
4.1 EXPERIMENT SETUP

Model Selection. We evaluate ten state-of-the-art large language models, comprising both propri-
etary and open-source systems. Proprietary models include Claude-3.5-Haiku (Anthropic| [2024),
Claude-Sonnet-4 (Anthropic, [2025), Gemini-2.5-Flash |DeepMind (2025), Gemini-2.5-Pro (Google
DeepMind, [2025)), GPT-40 (OpenAl, 2024), and GPT-5 (OpenAl, 2025a). Open-source models
include LLaMA-3-405B (Metal, [2024a), LLaMA-3-8B (Metal, [2024b), Phi-4 (Microsoft Research,
2024])), and Qwen-3-235B (Qwen Team, [2025). To ensure strong instruction-following ability, we
employ the official chat or instruction-tuned variants of all models.

Baseline Implementation. We evaluate LLMs under three major usage modes: closed-book rea-
soning, standard retrieval-augmented inference, and CTI-specific variants. Unless otherwise noted,



Table II: Comparison of LLM performance (F1-score, %) across CTIARENA task categories. “CB”
denotes the closed-book setup, while “KW” denotes the best-performing knowledge-augmented
setup (among all augmentation methods). Highest scores for open-source and proprietary mod-
els are marked with underline and bold, respectively.

\ Structured Tasks | Unstructured Tasks | Hybrid Tasks
Model | ""reM | WIM | ATD | ESD | CSC|TAP |MLA | ATA | VCA
| CB KW | CB KW | CB KW | CB KW|KW|KW| KW | CB KW | CB KW
Open-source LLMs

LLaMA-3-405B | 0.12 098 | 003 098 003 098 | O 1 | 067|065 | 032 | 042 0.64 | 0.58 0.63
LLaMA-3-8B | 001 089 | 0 1 |00l 09| 0 1 | 059|046 | 038 |0.10 040 |0.13 028

Phi-4 004 095| 0 1 |00l 091| 0 1 |062]|076]| 040 | 024 036|030 049
Qwen-3235B | 004 1 | 0 1 |004 1 | 0 1 |071|070| 041 |040 054|058 0.65

Proprietary LLMs
Claude-3.5-Haiku | 0.05 0.93 | 0.02 1 0 0.97 0 0.55 | 058 | 0.44 | 0.50 0.46 | 048 0.49

1
Claude-Sonnet-4 | 0.24 0.99 | 0.15 1 0.01 0.99 | 0.01 1 0.55 | 0.56 | 0.48 | 046 0.64 | 0.71 0.73
Gemini-2.5-Flash 0 094|001 096 ]|0.06 099 0 1 0.69 | 0.61 | 0.44 | 0.56 0.54 | 0.53 0.55
1
1
1

Gemini-2.5-Pro | 0.03 0.92 | 0.03 098 | 0.09 0.96 0 0.61 | 079 | 036 | 0.58 0.70 | 0.63 0.57
GPT-40 0.03 097 0 096 | 001 0.99 0 0.66 | 0.67 | 0.40 | 0.48 0.63 | 0.60 0.69
GPT-5 0.09 098 | 0.05 0.99 | 0.06 0.95 | 0.01 0.72 | 0.66 | 039 | 0.64 0.76 | 0.83 0.90

all vanilla RAG baselines use text-embedding-3-large (OpenAl |2025b)) for semantic similarity com-
putation, with the top-k = 5 results above a similarity threshold of 0.5 retained as context. These
settings were chosen after exploratory trials as they yielded the most stable performance across tasks.

For structured tasks, we consider (i) closed-book, where models rely solely on parametric knowl-
edge, and (ii) inference-time knowledge injection, where identifiers from structured enumerations
(e.g., CVE IDs) are detected via regular expressions and the corresponding official entries are di-
rectly injected into the prompt. We exclude vanilla RAG for this category, as structured CTI entries
contain minimal descriptive text, making embedding-based retrieval ineffective and unnecessary.

For hybrid tasks, we evaluate (i) closed-book; (ii) vanilla RAG, where queries are matched against
the “description” fields of CVEs, CWEs, ATT&CK techniques, and CAPEC patterns; and (iii)
query-expanded RAG, a CTI-specific variant. The motivation stems from the observation that
generic embeddings often fail to align long narrative queries with domain-specific taxonomies. To
address this, we decompose inputs into atomic CTI behaviors (e.g., tactics, techniques, or weak-
ness symptoms) and perform retrieval separately for each, before aggregating the top-5 candidates
for inference. This “divide-and-conquer” strategy closes the gap between narrative phrasing and
structured taxonomy terms.

For unstructured tasks, we first evaluate (i) vanilla RAG, where the input report is embedded and
used to retrieve semantically similar reports from the corpus. However, vanilla RAG struggles when
different vocabularies are used to describe the same adversary or malware. To address this, we intro-
duce (ii)) CSKG-guided RAG, which leverages a curated Cyber Security Knowledge Graph (CSKG)
constructed with CTINexus (Cheng et al.,2025) under default settings. The CSKG encodes security
entities (e.g., actors, malware, vulnerabilities, [oCs) and their relations, enabling reports to be linked
through shared entities. For retrieval, entities are extracted from the query report, candidate reports
with overlapping entities are identified, and those with an entity-overlap rate > 0.6 are retained; the
top-k = 5 reports are then provided as evidence.

Evaluation Protocol. Given the heterogeneity of task formats, we adopt different evaluation ap-
proaches for each category. For structured tasks (RCM, WIM, ATD, ESD) and hybrid tasks
(VCA, ATA), we use exact string matching with regex-based normalization to compare model out-
puts against ground-truth answers and compute accuracy. For unstructured tasks (MLA, TAP,
CSC), the expected answers are open-ended and may vary in phrasing or level of detail. To handle
this diversity, we employ GPT-5 as an automatic judge guided by a structured rubric (see
to score predictions against reference answers at the bullet level, followed by human ver-
ification to ensure scoring reliability. In addition, for structured and hybrid tasks, we record and
analyze model reasoning traces to support detailed error diagnosis and interpretability of results.

4.2 RESULT ANALYSIS

Table summarizes the performance of all evaluated LLMs under closed-book (CB) and
knowledge-augmented (KW) settings. Beyond results, three noteworthy patterns emerge:



Table III: Performance of LLMs on un-
structured tasks under different baseline
settings: Vanilla (standard RAG) and CSKG
(CSKG-guided RAG). The best values are

Table IV: Performance of LLMs on hybrid tasks
under different baseline settings: Closed-book,
Vanilla (standard RAG), and Expansion (RAG with
query expansion). The best values are highlighted.

highlighted.
Model | csc | map | MLA Model ‘ ATA | VCA
‘Vanil]a CSKG‘Vanilla CSKG‘Vanilla CSKG ‘Closebook Vanilla Expansion‘Closebook Vanilla Expansion
LLaMA 33058 | 0562 0667 10430 065210312 0323  LLaMA-3-405B | 0575 0558 0625 | 0420 0540 0640
LLaMA-3-8B | 0476 0592 | 0462 0424 | 0258 0379 ~ LLaMA-3-8B 0.133 0275 0283 | 0.100 0220 0400
Phi—4 0.509 0617|0553 0.757 | 0.404 0355  Dhis 0308 0375 0492 | 0240 0480 0360
Qwen-3-235B | 0.663 0.712| 0.575 0709 | 0303 0407 ~ Qwen3-235B | 0583 0575 0650 | 0400 0360 040
GPT-5 0825 0742 0900 | 0.640 0600 0.760
GPT-5 0.721 0.671 | 0583 0.663 | 0.362 0394
GPT—4o 0.656 0.660 | 0579 0671|0355 0393  CPTo 0.600 0642 0692 | 0480 0580 0620
- Gemini-2.5-Flash| 0.525 0467 0550 | 0560 0.600 0.540
Gemini—2.5-Flash | 0.570 0.694 | 0.540 0.608 | 0.320 0.441 it
m Gemini-2.5-Pro | 0.625 0558 0567 | 0580 0740  0.700
Gemini-2.5-Pro | 0.612 0.609 | 0.528 0.789 | 0328 0.361 A
. Claude-3.5-Haiku| 0.467 0483 0492 | 0500 0520 0460
Claude-3.5-Haiku| 0.435 0548 | 0.476 0.584 | 0.443 0.410
Claude-Sonnet—4 | 0476 0547 | 0.506 0.562 | 0.408 0.478 ~ Ciude-Somnet=4 | 0708 0667 0725 | 0460 0580 0.640

Table V: Average retrieval performance on dynamic and hybrid tasks.

Dynamic | Hybrid (ATA) | Hybrid (VCA)
Vanilla | CSKG | Vanilla | Expansion | Vanilla | Expansion
Prec  Rec Fl | Prec  Rec Fl | Prec  Rec FI | Prec  Rec Fl | Prec  Rec Fl | Prec  Rec Fl
0.405 0.793 0.534 ‘ 0.500 0.854 0.615 ‘ 0.102 0.279 0.135 ‘ 0.310 0.433 0.349 ‘ 0.177 0.640 0.249 ‘ 0.330 0.620 0413

(1) Structured task performance saturates once knowledge is provided. Results in[Table IIjshow
that structured CTI tasks remain highly challenging in the closed-book setting, with the best scores
reaching only 0.24, 0.15, 0.99, and 0.01 on RCM, WIM, ATD, and ESD, respectively. These cor-
relations are explicitly defined in authoritative, community-maintained repositories such as NVD
for CVE and MITRE for CWE, CAPEC, and ATT&CK, yet most LLMs fail to internalize them as
parametric knowledge, leading to frequent hallucinations. This weakness arises because mappings
like CVECWE or CAPEG-ATT&CK represent long-tail enumerated knowledge that is rarely ab-
sorbed during pretraining. Once authoritative entries are injected or retrieved, reasoning becomes
straightforward and accuracy quickly saturates. This shows that the difficulty of structured CTI tasks
stems less from complex inference and more from whether models are supplied with the correct ref-
erences. We also observe that open-source models lag behind proprietary ones in the closed-book
mode, suggesting broader coverage of security-related content in proprietary pretraining. Crucially,
the gap disappears once external knowledge is provided: with authoritative evidence available, all
models achieve near-perfect accuracy. Hence, structured CTI reasoning hinges on reliable grounding
in external repositories, and simple knowledge augmentation is sufficient to close the gap.

(2) Hybrid tasks pose challenges in knowledge retrieval and grounding. Table [IV| highlights
several consistent patterns. First, knowledge augmentation improves performance over closed-
book baselines, but gains vary by model strength: stronger LLMs exploit retrieved content effec-
tively, while weaker ones struggle, widening the gap. Second, query-expanded RAG, which re-
formulates inputs into fine-grained CTI facets (e.g., tactics, techniques, or affected components),
consistently outperforms vanilla RAG by better aligning queries with the structure of target tax-
onomies. This yields substantial improvements, particularly for GPT-5 (ATA: 0.742 —0.900; VCA:
0.600 — 0.760). Third, proprietary LLMs achieve the strongest results, with GPT-5 far ahead of
open-source counterparts, while smaller models such as LLaMA-3-8B and Phi-4 remain weak even
under retrieval augmentation. Finally, ATA tasks appear consistently easier than VCA: ATT&CK
techniques are expressed in concrete behavioral terms (e.g., command execution, credential dump-
ing), which map directly to textual cues, whereas CWE weaknesses encode abstract design flaws
(e.g., improper validation) that must be inferred from indirect symptoms. Hence, VCA demands
deeper security knowledge and more semantic abstraction, making it the harder grounding problem.

(3) Unstructured tasks are constrained by cross-report synthesis rather than retrieval alone.
Unstructured tasks (CSC, TAP, MLA) yield the lowest accuracy, even under knowledge-augmented
setups. This difficulty arises because evidence is scattered across heterogeneous reports that differ
in style, granularity, and alias usage: the same actor may appear under multiple names, and malware
variants may be described with inconsistent technical detail. As a result, embedding-based vanilla
RAG often fails, semantic similarity alone misses correlations when surface forms diverge. Within



these tasks, CSC is relatively easier since campaign timelines are often described explicitly, while
MLA is hardest because reconstructing malware evolution requires integrating incremental changes
across reports. Entity-centric retrieval with CSKG-guided RAG, which links reports through overlap-
ping entities, produces smaller but more precise evidence sets and consistently outperforms vanilla
RAG. These results highlight that in unstructured CTI, precision on the right entities matters more
than retrieval breadth, and that the central bottleneck lies in synthesizing fragmented evidence across
reports even when relevant documents are retrieved.

4.3 ERROR ANALYSIS

We analyze failure patterns that reveal why CTI reasoning remains difficult for current LLMs.

Semantic drift from noisy retrieval. In VCA tasks, naive integration of retrieved passages some-
times amplifies noise. For example, when retrieval returned documents that appeared similar
in wording (e.g., discussions of password policies) rather than those describing the actual weak-
ness (e.g., CWE-308: Use of Single-Factor Authentication), models such as Claude-3.5-Haiku and
Gemini-2-Pro misclassified CWE-308 as CWE-521 or CWE-307. We define this as semantic drift:
retrieved evidence that is textually close to the query but corresponds to a different security concept.
Around 8% of VCA cases showed such drift, reducing accuracy from 63% to 55%. This highlights
a core limitation of semantic-similarity retrieval: passages that look linguistically relevant can still
misalign conceptually, steering models toward the wrong taxonomy entry. Robust CTI retrieval
therefore requires distinguishing superficial textual resemblance from evidence that is conceptually
faithful to the intended security category.

Resistance to leveraging correct evidence. Smaller models such as LLaMA-3-8B sometimes re-
trieved the correct evidence but failed to use it, instead reverting to incorrect default associations.
For instance, in CWE-521 cases, the model predicted unrelated weaknesses even though the cor-
rect CWE description was available in the retrieved context. Similarly, Gemini-2.5-Flash repeat-
edly mapped CWE-807 to CWE-451 despite having the correct supporting evidence retrieved. This
“retrieval-but-not-used” phenomenon accounted for 15% of VCA errors. While this behavior re-
duces susceptibility to noisy retrieval, it also prevents models from correcting outdated or misaligned
internal knowledge.

Instability of tailored approaches in smaller models. In ATA tasks, smaller open models such
as Phi-4 showed fluctuating performance depending on the retrieval strategy. Error analysis reveals
that these models often struggled to follow decomposition instructions, producing incorrect splits
of the narrative and thereby retrieving noisy documents. As a result, Phi-4 lost 12% accuracy with
query-expanded RAG compared to vanilla RAG. This suggests that retrieval strategies that improve
coverage for stronger models can instead destabilize weaker ones, showing a tradeoff between re-
trieval complexity and model robustness.

Implicit boundary between internal knowledge and retrieval grounding. This subtle failure
mode was identified only through close inspection of reasoning traces. In some cases, models pro-
duced the correct answer using internal knowledge, but simultaneously claimed to ground their
prediction in retrieved references, even when the ground-truth evidence was not among the retrieved
candidates. This creates an illusion of faithful reasoning while in fact the justification is fabricated.
We observed such “unsupported correctness” in 3% of predictions overall, with GPT-40 showing
the highest rate at 7%. This pattern reflects an implicit boundary between parametric knowledge
and retrieval-based grounding. Although the final answer may be correct, unverifiable justifications
undermine trust in CTT applications.

5 CONCLUSION

We introduced CTIARENA, the first benchmark for evaluating LLMs on heterogeneous, multi-
source CTI. Our dataset contains 691 high-quality QA pairs grounded in authoritative CTI sources,
enabling rigorous and realistic evaluation. Experiments reveal both the limitations of current LLMs
and the promise of retrieval-augmentation strategies, establishing CTTARENA as a catalyst for future
research on domain-tailored methods and the development of next-generation CTI copilots.
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Appendix

A DATASET DETAILS

A.1 SECURITY KNOWLEDGE FRAMEWORKS

¢ CVE (Common Vulnerabilities and Exposures). CVE provides a standardized catalog of pub-
licly disclosed vulnerabilities. Each entry is assigned a unique CVE identifier and a short de-
scription, enabling consistent tracking across security advisories, vendors, and tools. CVE serves
as the industry baseline for vulnerability identification and reporting.

* CWE (Common Weakness Enumeration). CWE generalizes beyond individual vulnerabilities
by categorizing recurring software and hardware weakness patterns. Each CWE entry defines the
weakness, describes its consequences, and provides potential mitigations. CWE thus supports
reasoning about the root causes underlying CVE instances.

¢ CAPEC (Common Attack Pattern Enumeration and Classification). CAPEC documents
reusable adversarial attack patterns that exploit weaknesses (CWE). Each CAPEC entry spec-
ifies the attack mechanics, required conditions, and potential impacts. By bridging weaknesses
with exploitation strategies, CAPEC facilitates systematic threat modeling.

e MITRE ATT&CK. ATT&CK is an empirically grounded knowledge base of adversarial tactics,
techniques, and procedures (TTPs) observed in real-world intrusions. Organized into a matrix,
ATT&CK captures how attackers operate across the intrusion lifecycle, from initial access to
impact. It has become the de facto framework for threat hunting, detection, and evaluation.

A.2 DISTRIBUTION OF REPORTS

Table[VI|summarizes the top 10 distribution of blog sources contributing to our dataset. The ranking
reveals that a small number of highly active security news outlets (e.g., The Hacker News, Bleep-
ingComputer, and Security Week) dominate coverage, while contributions from industry blogs (e.g.,
Unit42 and Microsoft) ensure representation of vendor-driven intelligence. The vertical ellipsis in-
dicates additional long-tail sources not explicitly listed. In total, our corpus aggregates 321 unique
blog entries from 35 popular threat intelligence vendors, with 63% of them originating after 2020.

Table VI: Top-10 distribution of blog sources.

Rank  Source Count
1 thehackernews 31
2 BleepingComputer 29
3 securityweek 28
4 darkreading 27
5 Unit42 26
6 AVERTIUM 20
7 welivesecurity 20
8 trendmicro 19
9 threatPost 19
10 Microsoft 18
Total 321
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B ADDITIONAL DATA EXAMPLES

B.1 B2F DATASET
Table VII: Mapping of security blogs to CWE entries in the B2F dataset.
ID Blog Title CWE Mappings Vulnerability Summaries
Microsoft CWE-693: Protection Mechanism SVZt])E Q?iiﬁgjﬁj 2};12?)??2(1 y&k_ogglg:
1 Zero-Day Failure; CWE-400: Resource Ex- p ’ ST
Vulnerabilities haustion 2023—38_180 caused .NET DoS via resource
exhaustion.
BlackCat CWE-693: Protection Mechanism BlackCat disgflbles security/backup pro-
2 Ransomware & Failure; CWE-284: Improper Ac- cesses, bypassing defenses; weak privilege
Tri ie Extort cess C(;n trol ’ isolation allows termination of defenses and
p lateral movement.
t(rjrs]tli f%;tal_)eésggl_llz il(t)lzn %fsgg% Exploited Telerik deserialization (CVE-
Unmaintaine’d Com onent.S' CWE- 2019-18935) for RCE; outdated component
434:  Dan erouspFile iJ load: allowed initial access; malicious uploads
3 Silent CWE-9 4- Cgo de Iniection: EWE: (DLLs/webshells); arbitrary code injection;
Skimming 269 Pri\;ile o Man aJ emen,t‘ CWE- Potato tools escalated privileges; weak ac-
28 4: Accesgq Contril' CV\,’E-ZOO' cess controls enabled lateral moves; pay-
Info. Ex osu;e’ CWE—,778' Insufﬁ; ment data exfiltrated; inadequate logging
cient Lopgging ’ ’ allowed long-term persistence.
CWE-668: Exposure to Wrong
Sphere; CWE-307: Excessive Au-
thentication Attempts; CWE-287: Publicly exposed RDP/ESXi enabled brute
Improper Authentication; CWE- force; missing lockout on RDP; absence of
521: Weak Passwords; CWE-522: MFA allowed credential use; weak pass-
4 Akira Unprotected Credentials; CWE- words cracked; credentials dumped from
Ransomware  284:  Access Control; CWE- memory; AD/DC misconfigs enabled per-
693: Protection Mechanism Fail- sistence; defenses disabled; outdated ESXi
ure; CWE-1104: Unmaintained exploited; exfiltrated data leaked; FTP ex-
Components; CWE-200: Info Ex- filtration risked plaintext exposure.
posure; CWE-319: Cleartext Trans-
mission
-22: Path Traversal; - Qli - - allowed unautho-
CWE-22: Path T I; CWE- Qlik CVE-2023-41266 allowed h
918: SSRF; CWE-862: Missing rized HTTP requests; CVE-2023-41265
Authorization; CWE-306: Missing SSRF enabled escalation; unauthorized ac-
CACTUS Authentication; CWE-269: Privi- tions executed without checks; sensitive op-
5 and 3AM lege Management; CWE-693: Pro- erations without authentication; privilege
Ransomware  tection Mechanism Failure; CWE- escalation via tunneling; incomplete patch
668: Exposure to Wrong Sphere; bypassed; internet-exposed Qlik broadened
CWE-829: Untrusted Functionality attack surface; malvertising embedded un-
Inclusion trusted functionality.
CWE-1336: Improper Neutraliza- . .
Atlassian Con- tion of Special Elements in Tem- SSTI in Colnf.luence cnabled unauthenq—
fluence late Eneine: CWE-94: Code Iniec- cated RCE; injected templates led to arbi-
6 P . gmne; ; : J trary code execution; improper validation
RCE Exploita- tion; CWE-20: Improper Input Val-—, © injection; outdated Confluence left
tion tglg;c;rgﬂSXE-llm: Unmaintained systems exposed.
CVE-2024-0519 allowed buffer over-read
Chrome CWE-125:  Out-of-bounds Read; SXPOSing memory: - CVE-2024-0517 en-
7 Zero-Day 2024 CWE-787: Out-of-bounds Write; abled out-of-bounds writes leading to cor-
Exploitation =~ CWE-843: Type Confusion ruption/RCE; CVE-2024-0518 type confu-

sion caused memory corruption and possi-
ble code execution.
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B.2 STRUCTURED DATASET

Table VIII: Example questions and answers in the Structured dataset.

Task

Question

Answer

RCM

Which software weakness corresponds to CVE-
2023-38327, and why is that the root cause of
this vulnerability?

CWE-203. CVE-2023-38327 causes user enu-
meration via response differences, matching
CWE-203: observable discrepancy exposing
state information.

RCM

Which CWE maps to CVE-2024-10644, and
why is that weakness the root cause of this re-
mote code execution issue?

CWE-9%4. CVE-2024-10644 causes code in-
jection via unneutralized external input, match-
ing CWE-94: constructs code segments using
externally-influenced input without proper neu-
tralization.

RCM

Which CWE is the root cause of CVE-2024-
11824, and why does this vulnerability map to
that weakness?

CWE-79. CVE-2024-11824 causes stored XSS
by not neutralizing input, matching CWE-79:
improper neutralization of input during web
page generation.

WIM

Which CVE instantiates CWE-192 (Integer Co-
ercion Error), and why does that CVE demon-
strate an integer coercion error?

CVE-2022-2639. Demonstrates integer coer-
cion error via incorrect size reservation, instan-
tiating CWE-192: type casting or truncation
flaws.

WIM

Which CVE instantiates CWE-1426 (Improper
Validation of Generative Al Output), and why
does it demonstrate this weakness?

CVE-2024-3402. Demonstrates improper val-
idation of generative Al output, instantiat-
ing CWE-1426: insufficient validation of Al-
generated outputs.

WIM

Which CVE instantiates CWE-1231 (Improper
Prevention of Lock Bit Modification), and why
does that vulnerability demonstrate this weak-
ness?

CVE-2017-6283. Demonstrates improper pre-
vention of lock bit modification, instantiating
CWE-1231: uses a trusted lock bit but allows
modification after setting.

ATD

Which MITRE ATT&CK technique maps to
CAPEC-141 (Cache Poisoning)? Explain why
that technique corresponds to this attack pat-
tern.

T1557.002. Corresponds to ARP cache poison-
ing, mapping CAPEC-141: attacker places in-
correct or harmful material in cache.

ATD

Which MITRE ATT&CK technique maps to
CAPEC-2 Inducing Account Lockout? Explain
why this technique corresponds to this attack
pattern.

T1531. Corresponds to user account access
removal, mapping CAPEC-2: attacker lever-
ages throttling mechanism to lock out legitimate
users.

ATD

Which MITRE ATT&CK technique maps to
CAPEC-25 (Forced Deadlock)? Explain why
that technique corresponds to this attack pat-
tern.

T1499.004. Exploits deadlock causing denial
of service, mapping CAPEC-25: adversary trig-
gers and exploits a deadlock condition.

ESD

Which CAPEC attack pattern exploits CWE-
125’s out-of-bounds read vulnerability? Ex-
plain why this pattern can exploit this weakness.

CAPEC-540. Exploits out-of-bounds read, tar-
geting CWE-125: product reads data past end
or before beginning of buffer.

ESD

Which CAPEC attack pattern exploits CWE-
190 (Integer Overflow or Wraparound)? Ex-
plain why that pattern can exploit this weak-
ness.

CAPEC-92. Exploits integer overflow, tar-
geting CWE-190: calculations exceed storage
bounds.

ESD

Which CAPEC attack pattern exploits CWE-
147? Explain why that CAPEC pattern can ex-
ploit the improper neutralization of input termi-
nators vulnerability.

CAPEC-460. Exploits parameter pollution, tar-
geting CWE-147: product receives input from
upstream, does not neutralize special elements
interpreted as input terminators.
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B.3 UNSTRUCTURED DATASET

Table IX: Example questions and answers in the Unstructured dataset.

Task Question Answer
Whatl mal\g{alt.re fIzli)rmhes, threat groupls, MalwareTools: PowerShell RAT (server.psl), Cobalt
CSC orvu ne;a ity 1Ds Ezpp ealr{consistént Y Strike beacons; Threat Actor Groups: Silent Skimmer;
across these reports?  {Report Con- vy apility IDs: CVE-2019-18935
tents}
Regions: Taiwan; China; Hong Kong; Japan; South Ko-
What are the primary target industries rea; broader Eastern Asia; overseas Taiwanese diaspora;
CSC or regions mentioned across these re- Sectors/Industries: government and research organiza-
ports? {Report Contents} tions (defense and policy); journalists and dissidents;
business and technology leaders.
Ygﬁ;; (t)l:; tmllst:ﬁ?gw?,f thézn]%lzli{glﬁ Earliest report date: December 2023 (first documenta-
CSC . tion of the Ferret macOS malware family). Latest report
based on the earliest and latest report date: April 23, 2025 (FBI seizure of blocknovas.com)
dates? {Report Contents} - AP ’ : :
Canonical Threat Actor Name: APT42. Aliases Re-
solved: APT35, TA453, Mint Sandstorm. Affilia-
tion: IRGC-linked Iranian state-sponsored actor. Pri-
mary TTPs: spear-phishing with malicious RTF/PDF
attachments, zero-day SQL injection, ChainDoor RAT,
What is the canonical threat actor name, custom Android spyware, Mimikatz credential harvest-
TAP resolving any aliases mentioned across ing, MFA interception, steganographic data exfiltration,
these reports? {Report Contents} coin-miner payloads. Main Targets: government min-
istries, critical infrastructure, officials, policymakers,
journalists, academics, dissidents. Key Insight: multi-
stage espionage-to-ransom capability with emphasis on
credential theft, lateral movement, and large-scale data
exfiltration.
Primary target regions: Kurdish Regional Government
in northern Iraq, Iraqi government networks, and a
What are the primary target regions and telecommunications provider in Uzbekistan. Primary
TAP sectors mentioned across these reports target sectors: oil and energy infrastructure, govern-
for BladedFeline’s cyberespionage ac- ment and diplomatic communications, and telecom ser-
tivities? {Report Contents} vices. Key intelligence objectives: exfiltration of diplo-
matic and financial data tied to regional oil reserves and
Western relations.
What are all the distinct malware vari-y gy ¢ 0p CACTUS, 3AM, FakeUpdates, Dridex,
MLA  ant names mentioned across these re- .
WastedLocker, PayloadBin, Hades.
ports? {Report Contents}
Early variants: phishing-delivered HTML attach-
ments to drop Get2 loader, deploy RATs (SDBOT,
FlawedAmmyy), Cobalt Strike, TinyMet reverse shells,
and DEWMODE web shell for exfiltration. Mid-stage:
Across these reports, what is the sin- exploitation of MOVEit Transfer SQL injection zero-
MLA gle most notable new capability that ap- day with Lemurloot web shell to manipulate databases,
peared in later variants compared to ear- exfiltrate records and Azure settings. Later variants:
lier ones? {Report Contents} shifted data-leak operations from Tor-hosted downloads
to decentralized BitTorrent distribution (magnet links,
DHT trackers) seeding terabytes of stolen data. Most
Notable New Capability: Decentralized BitTorrent-
based data leak distribution.
. ... Introduction of a zero-day Windows elevation-
MLA g;a;;;g;fe?ﬁtl:t‘;asgl‘;ﬁfz 2211’;‘;;% of-privilege exploit (CVE-2025-29824), enabling

to earlier ones? {Report Contents}

SYSTEM-level access and enhanced persistence and
lateral movement.
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B.4 HYBRID DATASET

Table X: Example questions and answers in the Hybrid dataset.

Task

Question

Answer

VCA

I recently read in a security blog: “Lack of
lockout/rate-limiting on database or remote ac-
cess logins enabled repeated guessing until cre-
dentials were obtained.” Please provide: 1) the
CWE category, 2) an explanation of the map-
ping, and 3) potential mitigations.

1) CWE-307: Improper Restriction of Exces-
sive Authentication Attempts. 2) Mapping
Explanation: No lockout or rate-limiting en-
ables unlimited guessing, directly addressed
by CWE-307. 3) Mitigations: disconnect af-
ter a few failed attempts; implement timeouts;
lock accounts after repeated failures; require
CAPTCHA or equivalent.

VCA

I recently read in a security blog: “Database
services were directly exposed to the internet,
allowing external adversaries to hijack them.”
Please provide: 1) the CWE category, 2) map-
ping explanation, and 3) modes of introduction.

1) CWE-668: Exposure of Resource to Wrong
Sphere. 2) Mapping Explanation: Exposing
database services to the public internet aligns
with CWE-668. 3) Modes of Introduction: Ar-
chitecture and Design; Implementation (secu-
rity tactic misapplied); Operation.

VCA

I recently read in a security blog: “Workflow
caused Office/MSHTML or Windows to load
and execute ActiveX/DLL components from
attacker-controlled servers or ISOs.” Please
provide: 1) the CWE category, 2) explanation,
and 3) detection methods.

1) CWE-829: Inclusion of Functionality from
Untrusted Control Sphere (noted under id 910
with cwe_id 829). 2) Mapping Explanation:
Loading untrusted ActiveX/DLL components
directly aligns with CWE-829. 3) Detection
Methods: Automated/Manual Static Analysis
(binary and source), Dynamic Analysis with
sandboxing, and Architecture or Design Re-
view.

ATA

I recently read in a security blog: “Cuba ran-
somware operators were infiltrating networks
by encrypting files using the “.cuba” extension.”
Please provide: 1) the MITRE ATT&CK cat-
egory that maps to this behavior, 2) an expla-
nation of the mapping between the ransomware
behavior and the technique, and 3) which oper-
ating systems and platforms are affected?

1) MITRE ATT&CK Category: Data Encrypted
for Impact (T1486). 2) Mapping Explana-
tion: Encrypting files to disrupt business opera-
tions aligns with T1486. 3) Affected Platforms:
Linux, macOS, Windows, IaaS, ESXi.

ATA

I recently read in a security blog: “Once
users open the malicious document, a new
version of a .Net credential stealer is loaded
via Follina, stealing credentials from Edge and
Chrome browsers.” Please identify the MITRE
ATT&CK category and affected operating sys-
tems.

1) MITRE ATT&CK Category: T1555.003 -
Credentials from Web Browsers. 2) Mapping
Explanation: Malicious document triggers cre-
dential stealer aligned with T1555.003. 3) Ap-
plicable Platforms: Linux, macOS, Windows.

ATA

Irecently read in a security blog: “In May 2023,
ZScaler detailed CryptNet ransomware. Opera-
tors claim to exfiltrate data prior to encryption.
Like CryptNet, Mallox also uses double extor-
tion.” Which MITRE ATT&CK technique cat-
egory maps to this behavior, how does it map,
and which platforms are affected?

1) MITRE ATT&CK Technique: T1486 - Data
Encrypted for Impact. 2) Mapping Explanation:
CryptNet and Mallox exfiltrate data before en-
crypting, consistent with T1486. 3) Applica-
ble Platforms: Linux, macOS, Windows, IaaS,
ESXi.

ATA

I recently read in a security blog: “For Iraqi
government victims, ESET suspects the group
exploited a flaw in an internet-facing web
server enabling web shell deployment.” Which
MITRE ATT&CK technique does this corre-
spond to, how does this behavior map to it, and
where in the attack lifecycle should we expect
this behavior?

1) T1190 - Exploit Public-Facing Application
2) Mapping Explanation: The adversary lever-
aged a vulnerability in an internet-facing web
server to deploy a web shell, which directly
aligns with exploiting a public-facing applica-
tion as defined in T1190. 3) Kill Chain Phase:
Initial Access
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C

This work investigates the capabilities of LLMs in CTI analysis tasks. LLMs were also used in
constructing and verifying the benchmark dataset. Beyond this, their use was limited to writing
assistance for language polishing and stylistic refinement. All technical content, formulations, ex-
perimental designs, and conceptual contributions were developed by the authors. Importantly, LLMs

THE USE OF LARGE LANGUAGE MODELS (LLMS)

were not involved in research ideation.

D

D.1

Attack Technique Attribution (ATA) belongs to Dynamic CTI tasks. In this prompt, variables en-
closed in curly braces (e.g., {SOURCE_NODE}, {TARGET_NODE}, {ASPECT}) are placehold-

PROMPT TEMPLATE

PROMPT IN DATASET GENERATION

ers that are dynamically replaced at runtime.
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Generation Prompt for ATA

INSTRUCTION

You are an Attack Technique Attribution (ATA) assistant. Generate a (question, answer) pair for RAG
benchmarking based on a security blog snippet and MITRE ATT&CK framework reference. Use only
the provided information. Do not invent facts.

INPUTS

* Source blog (attack description): {SOURCE_NODE}
¢ MITRE ATT&CK framework reference: {TARGET_NODE}

GUIDELINES

* Formulate a concise Question (1-2 sentences). Begin with: I recently read in a security blog: "...'
Then ask to identify the MITRE ATT&CK category and explain the mapping.
* Additionally, request the relevant aspect { ASPECT}:
— If {ASPECT} =kill_chain_phases: ask where in the attack lifecycle the behavior occurs.
— If {ASPECT} = x_mitre_detection: ask how it can be detected (logs, sensors, NDR).
— If {ASPECT} = x_mitre_platforms: ask which operating systems are affected.
— If {ASPECT} = x_mitre_data_sources: ask which telemetry/logs can detect it.
¢ Answer should use a numbered list to provide:
— MITRE ATT&CK technique ID; Mapping explanation; Response to the selected { ASPECT}.

EXAMPLE
Question: The attack involves crafting Microsoft Office documents to circumvent the Mark of the Web
security feature. Please provide:

e The MITRE ATT&CK technique that maps to this behavior.
* An explanation of the mapping.
 The kill chain phase.

Answer:

* T1204.002 — User Execution: Malicious File.

e Mapping Explanation: Crafting Office documents to bypass security features aligns with
T1204.002, involving tricking users into executing malicious files.

« Kill Chain Phase: Execution.

OUTPUT
Respond with only the JSON object:

non

{ "question": "Your question here"; "answer": "Your answer with bullet points" }



Vulnerability Classification and Attribution (VCA) belongs to the Dynamic CTI tasks, where the
model aligns security blog vulnerability descriptions with the CWE framework. In this prompt,
variable transformation follows the same procedure as in ATA.

Prompt for VCA Generation

INSTRUCTION

You are a Vulnerability Classification and Attribution (VCA) assistant. Generate a (question, answer)
pair for RAG benchmarking based on a security blog snippet and CWE framework reference. Use only
the provided information. Do not invent facts.

INPUTS

* Source blog (vulnerability description): {SOURCE_NODE}
¢ CWE framework reference: {TARGET_NODE}

GUIDELINES

* Formulate a concise Question (1-2 sentences). Begin with: I recently read in a security blog: "..."
Then ask to identify the CWE category and explain the mapping.
* Additionally, request the relevant aspect { ASPECT}:
— If {ASPECT} = Applicable_Platforms: ask what platforms or stacks are impacted.
— If {ASPECT} = Modes_Of_Introduction: ask at what stage the issue is introduced.
— If {ASPECT} = Likelihood_Of_Exploit: ask how often attackers exploit it in real-world at-
tacks.
— If {ASPECT} = Common_Consequences: ask what consequences or risks it causes.
— If {ASPECT} = Detection_Methods: ask how it can be detected.
— If {ASPECT} = Potential_Mitigations: ask what fixes (code or config changes) are recom-
mended.
¢ Answer should use a numbered list to provide:
- CWEID.
— Mapping explanation.
— Response to the selected aspect { ASPECT}.

EXAMPLE

Question: I recently read in a security blog: "A web application fails to properly validate file uploads,
allowing attackers to upload malicious executable files that can be executed on the server." Please
provide:

* The CWE category that maps to this vulnerability.
* An explanation of the mapping.
» The potential mitigations.

Answer:

* CWE-434 — Unrestricted Upload of File with Dangerous Type.
* Mapping Explanation: Failure to validate file types/extensions before allowing uploads aligns
directly with CWE-434.
» Potential Mitigations:
— Implement strict allowlist validation of file types.
— Verify content-type beyond file extensions.
Store uploaded files outside the web root.
Scan files for malicious content before storage.
Use secure upload libraries with built-in validation.

OUTPUT
Respond with only the JSON object:

{

"question": "Your question here",
"answer": "Your answer with bullet points"

}
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Root Cause Mapping (RCM) belongs to the Structured CTI tasks, where the model aligns CVE
entries with CWE references to identify root causes of vulnerabilities. In this prompt, variables
enclosed in curly braces (e.g., {SOURCE_NODE}, {TARGET_NODE}) are placeholders dynami-
cally replaced at runtime. Specifically, {SOURCE_NODE} provides the CVE input, while { TAR-
GET_NODE} supplies the CWE reference for mapping.

Prompt for RCM Generation

INSTRUCTION

You are a Cyber Threat Intelligence (CTI) assistant. Given one CVE entry (JSON) as the source and
one CWE entry (JSON) as the target, generate a (question, answer) pair for benchmarking RAG on the
Root Cause Mapping (RCM) task. Use only the provided inputs. Do not invent facts.

INPUTS

+ SOURCE CVE: {SOURCE_NODE}
+ TARGET CWE: {TARGET_NODE}

GUIDELINES

¢ Formulate a Question that:
— References the source CVE (by ID or title).
— Asks which CWE it maps to.
— Asks why this CWE is the root cause.
— Avoids explicitly naming the CWE ID in the question.
* Answer should be a bullet list containing:
- CWEID (e.g., “CWE-770").
— Explicit reference to both CVE and CWE with short mapping explanation.
— Each bullet <= 22 words.

EXAMPLE
Question: Which CWE is the root cause of CVE-2018-6869? Explain why that CWE is the root cause
of CVE-2018-6869?

Answer:
« CWE-770.

e CVE-2018-6869 causes uncontrolled memory allocation, matching CWE-770: allocation of re-
sources without limits.

OUTPUT
Respond with only the JSON object:

{

"question": "Your question here",
"answer": "— CWE-XXX.\n—- CVE-XXXX causes ..., matching CWE-XXX: ..."

}
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Weakness Instantiation Mapping (WIM) belongs to the Structured CTI tasks, where the model aligns
CWE entries with CVE instantiations to determine how specific vulnerabilities embody generalized
weaknesses. In this prompt, variable transformation follows the same procedure as in RCM.

Prompt for WIM Generation

INSTRUCTION

You are a Cyber Threat Intelligence (CTI) assistant. Given one CWE entry (JSON) as the source and
one CVE entry (JSON) as the target, generate a (question, answer) pair for benchmarking RAG on the
Weakness Instantiation Mapping (WIM) task. Use only the provided inputs. Do not invent facts.

INPUTS

* SOURCE CWE: {SOURCE_NODE}
* TARGET CVE: {TARGET_NODE}

GUIDELINES

¢ Formulate a Question that:
— References the source CWE (by ID or title).
— Asks which CVE instantiates this weakness.
— Asks why this CVE demonstrates the weakness.
— Avoids explicitly naming the CVE ID in the question.
* Answer should be a bullet list containing:
— CVEID (e.g., “CVE-2018-6869").
— Explicit reference to both CWE and CVE with short instantiation explanation.
— Each bullet <= 22 words.

EXAMPLE
Question: Which CVE instantiates CWE-770? Explain the reason why that CVE demonstrates CWE-
7707
Answer:
* CVE-2018-6869.
* CVE-2018-6869 demonstrates uncontrolled memory allocation, instantiating CWE-770: alloca-
tion of resources without limits.

OUTPUT
Respond with only the JSON object:

{

"question": "Your question here",
"answer": "— CVE-XXXX.\n— CVE-XXXX demonstrates ..., instantiating CWE-XXX: ..."

}
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Attack Technique Derivation (ATD) belongs to the Structured CTI tasks, where the model links
CAPEC attack patterns to MITRE ATT&CK techniques, thereby deriving atomic adversarial behav-
iors. In this prompt, variable transformation follows the same procedure as in RCM.

22

Prompt for ATD Generation

INSTRUCTION

You are a Cyber Threat Intelligence (CTI) assistant. Given one CAPEC entry (JSON) as the source and
one MITRE ATT&CK entry (JSON) as the target, generate a (question, answer) pair for benchmarking
RAG on the Attack Technique Derivation (ATD) task. Use only the provided inputs. Do not invent
facts.

INPUTS

+ SOURCE CAPEC: {SOURCE_NODE}
« TARGET MITRE ATT&CK: {TARGET_NODE}

GUIDELINES

¢ Formulate a Question that:
— References the source CAPEC (by ID or title).
— Asks which MITRE ATT&CK technique maps to this attack pattern.
— Asks why this technique corresponds to the pattern.
— Avoids explicitly naming the MITRE ATT&CK technique ID in the question.
* Answer should be a bullet list containing:
— MITRE ATT&CK technique ID (e.g., “T1059.0017).
— Explicit reference to both CAPEC and ATT&CK with a short mapping explanation.
— Each bullet <= 22 words.

EXAMPLE
Question: Which MITRE ATT&CK technique maps to CAPEC-242? Explain the reason why that
technique corresponds to CAPEC-242?

Answer:

* T1059.001.
* T1059.001 corresponds to PowerShell command execution, mapping CAPEC-242: using Power-
Shell for command execution.

OUTPUT
Respond with only the JSON object:

{

"question": "Your question here",
"answer": "— TXXXX.\n—- TXXXX corresponds to ..., mapping CAPEC-XXX: ..."

}



Exploitation Surface Discovery (ESD) belongs to the Structured CTTI tasks, where the model links
CWE weaknesses to CAPEC attack patterns, thereby identifying potential exploitation paths. In this
prompt, variable transformation follows the same procedure as in RCM.
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Prompt for ESD Generation

INSTRUCTION

You are a Cyber Threat Intelligence (CTI) assistant. Given one CWE entry (JSON) as the source and
one CAPEC entry (JSON) as the target, generate a (question, answer) pair for benchmarking RAG on
the Exploitation Surface Discovery (ESD) task. Use only the provided inputs. Do not invent facts.

INPUTS

* SOURCE CWE: {SOURCE_NODE}
* TARGET CAPEC: {TARGET_NODE}

GUIDELINES

¢ Formulate a Question that:
— References the source CWE (by ID or title).
— Asks which CAPEC attack pattern exploits this weakness.
— Asks why the CAPEC pattern can exploit the CWE vulnerability.
— Avoids explicitly naming the CAPEC ID in the question.
* Answer should be a bullet list containing:
— CAPEC attack pattern ID (e.g., “CAPEC-63).
— Explicit reference to both CAPEC and CWE with a short mapping explanation.
— Each bullet <= 22 words.

EXAMPLE

Question: Which CAPEC attack pattern exploits CWE-79? Explain the reason why that CAPEC
pattern can exploit CWE-79?

Answer:

e CAPEC-63.
* CAPEC-63 exploits cross-site scripting vulnerability, targeting CWE-79: improper neutralization
of input during web page generation.

OUTPUT
Respond with only the JSON object:

{

"question": "Your question here",
"answer": "— CAPEC-XXX.\n— CAPEC-XXX exploits ..., targeting CWE-XXX: ..."

}



Campaign Storyline Construction (CSC) belongs to the Unstructured CTI tasks, where the model
integrates multiple heterogeneous reports to extract campaign-level threat intelligence. Variables
enclosed in curly braces (e.g., {SOURCE_NODE}, {TARGET_NODES}, {ASPECT}) are place-
holders dynamically replaced at runtime. Specifically, {SOURCE_NODE} provides the seed report,
{TARGET_NODES} includes related contextual reports, and { ASPECT} controls which intelli-
gence attribute (entities, dates, targeting, tools) is queried.

Prompt for CSC Generation

INSTRUCTION

You are a Campaign Storyline Construction (CSC) assistant. Generate a (question, answer) pair for
RAG benchmarking based on security reports to extract campaign intelligence. Use only the provided
information. Do not invent facts.

INPUTS

* Source blog: {SOURCE_NODE}
* Related blogs: {TARGET_NODES}

GUIDELINES

* Formulate a Question (1-2 sentences) that requests campaign-level intelligence from cross-report
analysis.
* Depending on { ASPECT}, the question should ask for:
— If {ASPECT} = entities: ask for common entities (malware, threat actors, CVEs).
— If {ASPECT} = dates: ask for campaign time span (earliest and latest reports).
— If {ASPECT} = targeting: ask for primary target industries/regions.
— If {ASPECT} = tool: ask for canonical tools or malware consistently used.
* Answer should:
— Provide extracted campaign intelligence.
Address the selected aspect { ASPECT}.
Avoid referring to blog IDs.
Use bullet points for clarity.

EXAMPLE

Question: What malware families, threat groups, or vulnerability IDs appear consistently across these
blogs?

Answer:

¢ Malware Families: Emotet, TrickBot
* Threat Actor Groups: APT28, Lazarus Group
¢ Vulnerability IDs: CVE-2021-34527, CVE-2020-1472

OUTPUT
Respond with only the JSON object:

{

"question": "Your question here",
"answer": "Your answer with bullet points"

}
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Threat Actor Profiling (TAP) belongs to the Unstructured CTI tasks, where the model integrates
multiple heterogeneous reports to extract threat actor intelligence. In this prompt, variable transfor-
mation follows the same procedure as in CSC.
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Prompt for TAP Generation

INSTRUCTION

You are a Threat Actor Profiling (TAP) assistant. Generate a (question, answer) pair for RAG bench-
marking based on security reports to extract threat actor intelligence. Use only the provided informa-
tion. Do not invent facts.

INPUTS

* Source blog: {SOURCE_NODE}
* Related blogs: {TARGET_NODES}

GUIDELINES

* Formulate a Question (1-2 sentences) that requests threat actor intelligence from cross-report anal-
ysis.
* Depending on { ASPECT}, the question should ask for:
— If {ASPECT} = actor: ask for canonical threat actor name and alias resolution.
— If {ASPECT} = tool: ask for primary tool or malware consistently attributed.
— If {ASPECT} = target: ask for primary target sectors or regions.
* Answer should:
— Provide extracted threat actor intelligence.
— Address the selected aspect { ASPECT}.
— Avoid referring to blog IDs.
— Use bullet points for clarity.

EXAMPLE

Question: What is the canonical threat actor name, resolving any aliases mentioned across these re-
ports?

Answer:

¢ Canonical Threat Actor Name: APT29
* Aliases Resolved: Cozy Bear, Nobelium
* Primary Tool/Malware: Cobalt Strike, Mimikatz

OuTPUT
Respond with only the JSON object:

{
"question": "Your question here",
"answer": "Your answer with bullet points"

}



Malware Lineage Analysis (MLA) belongs to the Unstructured CTI tasks, where the model in-
tegrates multiple heterogeneous reports to extract malware lineage intelligence. In this prompt,
variable transformation follows the same procedure as in CSC.

Prompt for MLA Generation

INSTRUCTION

You are a Malware Lineage Analysis (MLA) assistant. Generate a (question, answer) pair for RAG
benchmarking based on security reports to extract malware lineage intelligence. Use only the provided
information. Do not invent facts.

INPUTS

* Source blog: {SOURCE_NODE}
* Related blogs: {TARGET_NODES}

GUIDELINES

* Formulate a Question (1-2 sentences) that requests malware lineage intelligence from cross-report
analysis.
* Depending on { ASPECT}, the question should ask for:
— If {ASPECT} = variant: ask for all distinct malware variants across reports.
— If {ASPECT} = capability: ask for the most notable new capability added in later variants.
* Answer should:
— Provide extracted malware lineage intelligence.
— Address the selected aspect { ASPECT}.
— Avoid referring to blog IDs.
— Use bullet points for clarity.

EXAMPLE
Question: What are all the distinct malware variant names mentioned across these reports?

Answer:

* Emotet v1.0
* Emotet v2.0
* Emotet v3.0
* Emotet v4.0
Most Notable New Capability: Added worm-like propagation in v3.0

OuTPUT
Respond with only the JSON object:

{

"question": "Your question here",
answer": "Your answer with bullet points

}
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D.2 LLM-AS-A-JUDGE

We adopt an LLM-as-a-Judge framework to triage QA pairs generated for CTI analysis. The judge
model applies a structured rubric that evaluates each sample along five dimensions: (i) factual cor-
rectness and grounding in the provided CTI evidence, (ii) relevance to concrete security entities or
activities, (iii) clarity and unambiguity of the language, (iv) consistency with the question intent, and
(v) completeness of reasoning. Responses containing hallucinations or unverifiable claims receive

lower scores.

Filtering policy: The judge returns a single holistic score in [1,5]. We retain only items with a score
>= 3 for expert second-stage review; items with scores < 3 are discarded to reduce reviewer burden
and improve data reliability. This design ensures (1) reproducible screening with transparent criteria,
(2) high recall of plausibly-correct items for expert adjudication, and (3) a clean separation between

automatic triage and human confirmation.
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Prompt for LLM-as-a-Judge

INSTRUCTION

You are a cybersecurity expert and a rigorous evaluator of question—answer (QA) pairs in the cyber
threat intelligence (CTI) domain. Judge each sample using the rubric below and produce a single
holistic score from 1 to 5.

INPUTS

CTI Document(s): {document_text}
Question: {question}

Answer: {answer}

EVALUATION RUBRIC

1. Factual Correctness & Grounding — Is the answer factually correct and directly supported by
the provided CTI document (if any)? Avoid hallucinations and unverifiable claims.

2. Relevance — Does the QA focus on concrete cybersecurity entities (exposures, techniques, assets,
indicators) rather than trivial or generic content?

3. Clarity — Is the question unambiguous and is the answer concise and machine-usable in CTI
systems?

4. Task Consistency — Does the answer faithfully address the asked question and remain logically
consistent?

5. Completeness — Does the answer include the key technical context and reasoning needed for CTI
usage?

Scoring Scale (1-5)

¢ 5 — Fully correct, well-grounded, clear, task-faithful, and complete.

4 — Correct and grounded with minor omissions or minor stylistic issues.

e 3 — Largely plausible but with partial grounding or limited completeness; acceptable for expert
re-check.

2 — Weak grounding, notable gaps or ambiguity; likely unusable without major fixes.

¢ 1 — Incorrect or hallucinated; off-task or unverifiable.

OUTPUT
Return only the following JSON object (no extra text or markdown):

"assessment": "<concise justification>",

n,on

"score": "<integer 1-5>"

}



D.3 PROMPT IN DATASET EVALUATION

Root Cause Mapping (RCM) evaluates whether models can correctly associate a vulnerability in-
stance with its underlying software weakness. In particular, the task requires identifying the CWE
that serves as the fundamental cause of a given CVE.

Variables enclosed in curly braces (e.g., {CVE_ID}, {entity_id}, {description}, {related_cwes},
{cwe_detail}) represent placeholders dynamically substituted at runtime. Specifically, {CVE_ID}
denotes the vulnerability under evaluation, {entity_id} captures the case context, while {description}
and {related_cwes} provide supporting metadata. The {cwe_detail} field enumerates candidate
CWE entries along with their textual descriptions.

r_[ Prompt for RCM Evaluation |
J

INSTRUCTION

You are a Root Cause Mapping (RCM) expert. Answer questions about cybersecurity mappings based
on your knowledge. For Root Cause Mapping, provide the CWE ID that represents the underlying
cause of the given CVE, along with a concise explanation.

INPUTS

Based on your knowledge, which CWE does {CVE_ID} map to? Please provide the CWE ID and a
brief explanation.

USER_PROMPT_WITH_DESCRIPTION: Based on the following information about {entity_id},
which CWE does it map to?

* Description: {description}
* Related CWEs: {related_cwes}

CWE Details: - {cwe_detail.id}: {cwe_detail.description[:200]} - ...

OUTPUT
Please provide the CWE ID and a brief explanation.

Weakness Instantiation Mapping (WIM) evaluates whether models can correctly associate an ab-
stract software weakness with its concrete vulnerability instances. Specifically, the task requires
identifying the CVE that instantiates a given CWE. In this prompt, variable transformation follows
the same procedure as in RCM.

’_[ Prompt for WIM Evaluation ]

INSTRUCTION

You are a Weakness Instantiation Mapping (WIM) expert. Answer questions about cybersecurity map-
pings based on your knowledge. For Weakness Instantiation Mapping, identify the CVE that instanti-
ates the given CWE and provide a concise explanation.

INPUTS
Based on your knowledge, which CVE instantiates { CWE_ID}? Please provide the CVE ID and a

brief explanation.
USER_PROMPT_WITH_DESCRIPTION: Based on the following information about {entity_id},
which CVE instantiates it?

¢ Description: {description}
¢ Related CVEs: {related_cves}

CVE Details: - {cve_detail.id}: {cve_detail.description[:200]} - ...

OUTPUT
Please provide the CVE ID and a brief explanation.
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Attack Technique Derivation (ATD) task evaluates whether models can correctly associate abstract
attack patterns with corresponding adversarial techniques. ATD requires identifying the MITRE
ATT&CK technique that best maps to a given CAPEC entry. Variables enclosed in curly braces (e.g.,
{CAPEC_ID}, {entity_id}, {description}, {related_mitre}, {mitre_detail}) represent placeholders
dynamically substituted at runtime. Specifically, {CAPEC_ID} denotes the attack pattern under
evaluation, {entity_id} captures the case context, while {description} and {related_mitre} provide
supporting metadata. The {mitre_detail} field enumerates candidate ATT&CK techniques along
with their textual descriptions.

r-[ Prompt for ATD Evaluation |
J

INSTRUCTION

You are an Attack Technique Derivation (ATD) expert. Answer questions about cybersecurity map-
pings based on your knowledge. For ATD, provide the MITRE ATT&CK technique ID that corre-
sponds to the given CAPEC attack pattern, along with a concise explanation.

INPUTS
Based on your knowledge, which MITRE ATT&CK technique maps to { CAPEC_ID}? Please provide
the technique ID and a brief explanation.

USER_PROMPT_WITH_DESCRIPTION: Based on the following information about {entity_id},
which MITRE ATT&CK technique maps to it?

* Description: {description}
¢ Related MITRE ATT&CK techniques: {related_mitre}

MITRE ATT&CK Details: - {mitre_detail.id}: {mitre_detail.description[:200]} - ...

OUTPUT
Please provide the MITRE ATT&CK technique ID and a brief explanation.

Exploitation Surface Discovery (ESD) task evaluates whether models can correctly identify attack
patterns that exploit a specified software weakness. Specifically, the task requires selecting the
CAPEC entry that best describes how adversaries can leverage the given CWE. In this prompt,
variable transformation follows the same procedure as in RCM.

’_[ Prompt for ESD Evaluation ]

J )

INSTRUCTION

You are an Exploitation Surface Discovery (ESD) expert. Answer questions about cybersecurity map-
pings based on your knowledge. For Exploitation Surface Discovery, identify the CAPEC attack pat-
tern that can exploit the given CWE and provide a concise explanation.

INPUTS

Based on your knowledge, which CAPEC attack pattern exploits {CWE_ID}? Please provide the
CAPEC ID and a brief explanation.

USER_PROMPT_WITH_DESCRIPTION: Based on the following information about {entity_id},
which CAPEC attack pattern exploits it?

* Description: {description}
* Related CAPEC patterns: {related_capecs}

CAPEC Details: - {capec_detail.id}: {capec_detail.description[:200]} - ...

OUTPUT
Please provide the CAPEC ID and a brief explanation.

. J

Campaign Storyline Construction (CSC) task, evaluates the model’s ability to synthesize campaign-
level intelligence from heterogeneous security reports. Variables such as {query}, {context}, {clus-
tering_context}, and {task_description} serve as dynamic placeholders: {query} denotes the lat-
est report, {context} and {clustering_context} provide historical continuity, and {task_description}
specifies the intelligence focus.
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F[ Prompt for CSC Evaluation ]

J p

INSTRUCTION
You are a Campaign Storyline Construction (CSC) assistant. Analyze security reports to extract cam-
paign intelligence. Use only the provided information. Do not invent facts.

INPUTS
Latest Blog: {query}
Related Historical Blogs: {context} {clustering_context}

QUESTION

» {task_description}
* Do not refer to the blogs by their IDs in the answer.

EXAMPLE
Based on the question: "What is the time span of the EleKtra-Leak campaign based on the earliest and
latest report dates?"

Expected answer format:

 Earliest report date: December 2020
» Latest report date: October 6, 2023

OUTPUT
Please provide your answer:

Threat Actor Profiling (TAP) task evaluates the model’s ability to consolidate threat actor intelli-
gence from heterogeneous security reports. In this prompt, variable transformation follows the same
procedure as in CSC.

'_[ Prompt for TAP Evaluation |
J

INSTRUCTION

You are a Threat Actor Profiling (TAP) assistant. Analyze security reports to extract threat actor
intelligence.

Use only the provided information. Do not invent facts.

INPUTS
Latest Blog: {query}
Related Historical Blogs: {context}{clustering_context}

QUESTION

» {task_description}
* Do not refer to the blogs by their IDs in the answer.

EXAMPLE
Based on the question: "What is the canonical threat actor name, resolving any aliases mentioned
across these reports?"

Expected answer format:

¢ Canonical Threat Actor Name: APT29
 Aliases Resolved: Cozy Bear, Nobelium
* Primary Tool/Malware: Cobalt Strike, Mimikatz

OUTPUT
Please provide your answer:
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Malware Lineage Analysis (MLA) task evaluates the model’s ability to reconstruct malware evolu-
tion from heterogeneous security reports. In this prompt, variable transformation follows the same
procedure as in CSC.

—[ Prompt for MLA Evaluation ]

INSTRUCTION

You are a Malware Lineage Analysis (MLA) assistant. Analyze security reports to extract malware
lineage intelligence.

Use only the provided information. Do not invent facts.

INPUT
Latest Blog: {query}
Related Historical Blogs: {context} {clustering_context}

QUESTION

» {task_description}
* Do not refer to the blogs by their IDs in the answer.

EXAMPLE

Based on the question: "What are all the distinct malware variant names mentioned across these re-
ports?"

Expected answer format:

* Emotet v1.0
* Emotet v2.0
* Emotet v3.0
* Emotet v4.0
* Most Notable New Capability: Added worm-like propagation in v3.0

OUTPUT
Please provide your answer:

Closed-Book Attack Technique Attribution (ATA) task evaluates whether models can align textual
attack descriptions with the MITRE ATT&CK framework without external evidence. Variables such
as {question} represent dynamically substituted inputs, where the model must output (i) the relevant
technique ID, (ii) a clear mapping rationale, and (iii) corresponding detection recommendations
aligned to the {x_mitre_detection} field.

'_[ Prompt for Closed-Book Evaluation of ATA ]

INSTRUCTION
You are an Attack Technique Attribution (ATA) expert. Based on the following security question,
please provide:

e The MITRE ATT&CK technique ID (e.g., T1059.001 — PowerShell)
¢ An explanation of how the behavior maps to that technique
* Detection recommendations aligned to x_mitre_detection (logs, sensors, NDR)

INPUT
Question: {question}

OUTPUT
Please format your response as:

o 1) TH##H#H#(###) — [Technique/Sub-technique Name]
¢ 2) [Detailed mapping explanation]
¢ 3) [Detection guidance]
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Close-book Vulnerability Classification and Attribution (VCA) task evaluates a model’s ability to
map a natural-language vulnerability description to the appropriate CWE category without external
evidence. Given the input {question}, the model must (i) output the canonical CWE label (e.g.,
“CWE-434: Unrestricted Upload of File with Dangerous Type”), (ii) justify the mapping by linking
salient behaviors in the description to the CWE definition, and (iii) recommend actionable mitiga-
tions (code or configuration). This close-book setting isolates classification and reasoning quality by
removing retrieval effects, thereby assessing generalization from the standardized CWE taxonomy
to previously unseen textual descriptions.

f_[ Prompt for Closed-Book Evaluation of VCA ]
J

INSTRUCTION
You are a Vulnerability Classification and Attribution (VCA) expert. Based on the following security
question, please provide:

* The CWE category that maps to this vulnerability
* An explanation of how this vulnerability maps to the CWE
* What are the potential mitigations (code or configuration changes) to address this issue

INPUT
Question: {question}

OUTPUT
Please format your response as:

¢ 1) CWE-XXX: [CWE Name]
¢ 2) [Detailed explanation of the mapping]
* 3) [List of potential mitigations]

\ J

Vanilla Retrieval-Augmented Generation (RAG) setting for Attack Technique Attribution (ATA)
assesses whether models can correctly align adversarial behaviors with MITRE ATT&CK tech-
niques when provided with retrieved evidence. Given the input {question} and {evidence}, the
model is required to (i) identify the appropriate ATT&CK technique ID, (ii) explain how the de-
scribed behavior corresponds to that technique, and (iii) provide detection guidance aligned with
{x_mitre_detection}. This setup isolates the model’s ability to ground its reasoning in retrieved
ATT&CK knowledge, thereby measuring retrieval utility and attribution precision under evidence-
supported conditions.

’_[ Prompt for Vanilla Evaluation of ATA ]

INSTRUCTION
You are an Attack Technique Attribution (ATA) expert. Based on the following security question and
retrieved ATT&CK evidence, please provide:

e The MITRE ATT&CK technique ID (e.g., T1059.001 — PowerShell)
* An explanation of how the behavior maps to that technique
¢ Detection recommendations aligned to x_mitre_detection (logs, sensors, NDR)

INPUTS
Question: {question}
Retrieved ATT&CK Evidence: {evidence}

OUTPUT
Please format your response as:

o 1) T##HH(##H#) — [Technique/Sub-technique Name]
¢ 2) [Detailed mapping explanation]
¢ 3) [Detection guidance]

\ J

Vanilla RAG setting for VCA evaluates whether models can correctly associate vulnerabilities with
CWE categories when provided with retrieved evidence. In this prompt, variable transformation
follows the same procedure as in ATA.
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F[ Prompt for Vanilla Evaluation of VCA ]
J

INSTRUCTION
You are a cybersecurity expert. Based on the following security question and retrieved CWE evidence,
please provide:

* The CWE category that maps to this vulnerability
* An explanation of how this vulnerability maps to the CWE
* What are the potential mitigations (code or configuration changes) to address this issue

INPUTS
Question: {question}
Retrieved CWE Evidence: {evidence}

OUTPUT
Please format your response as:

¢ 1) CWE-XXX: [CWE Name]
¢ 2) [Detailed explanation of the mapping]
* 3) [List of potential mitigations]

- 7

RAG Expansion setting for ATA and VCA tasks evaluates whether models can derive more accurate
mappings by leveraging decomposed atomic behaviors. Variables enclosed in curly braces denote
dynamic placeholders: {behavior_text} denotes the raw description of the observed adversarial be-
havior; {atomic_behaviors} lists the finer-grained actions derived from behavior decomposition; and
{evidence} contains the selected ATT&CK or CWE matched against these atomic units.

For ATA, this means identifying the correct MITRE ATT&CK technique; for VCA, mapping to the
most suitable CWE.

F[ Prompt for RAG Expansion Evaluation in ATA/VCA ]
J

INSTRUCTION
You are a cybersecurity expert. Based on the following security question and the selected ATT&CK
evidence from atomic behavior analysis, please provide a confident answer.

INPUTS

Question: {question}

Original Behavior: {behavior_text}

Decomposed Atomic Behaviors: {atomic_behaviors}

Selected ATT&CK / CWE Evidence (from atomic behavior matching): {evidence}

GUIDELINES

* You can answer based on the provided ATT&CK / CWE evidence, or use your internal knowledge
if you’re confident

* You don’t have to select from the provided CWE:s if you have a better answer

* Be confident in your response — if you’re not sure, say so

* Provide the most accurate MITRE ATT&CK / CWE technique mapping

OUuTPUT
Please format your response as:

1) TH##H#(###) — [Technique/Sub-technique Name]

1) CWE-XXX: [CWE Name] (or "CWE-Unknown" if uncertain)
2) [Detailed explanation of the mapping and confidence level]

¢ 3) [Detection guidance aligned to x_mitre_detection]

¢ 3) [List of potential mitigations]

. 7

In hybrid evaluation settings, the pipeline first attempts to ground responses in external knowledge
sources. When no relevant evidence can be retrieved through atomic behavior matching, the model
is instructed to rely on its internal knowledge to produce an answer. This prompt thereby serves as
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a fallback mechanism, ensuring that the model continues to generate useful intelligence even under
evidence-sparse conditions.

Prompt for Internal Knowledge in ATA/VCA (No CWE/MITRE Evidence)

No relevant CWE/MITRE evidence was found through atomic behavior matching. Please
use your internal knowledge to provide the best possible answer.

The Judge-CWE-Mapping prompt is employed in the VCA task to validate whether a given atomic
behavior corresponds to a candidate CWE entry.

Variables enclosed in curly braces act as dynamic placeholders: {atomic_behavior} represents the
extracted fine-grained behavior under analysis; {full_vulnerability} provides broader context for
the CVE instance; {label} indicates the class of candidate mappings (e.g., CWE entries); {en-
try_label}, {candidate.title}, and {candidate.description} provide textual details of each candidate;
{candidate.similarity_score} quantifies retrieval similarity.

By requiring binary ("YES"/"NQO") judgments in JSON array format, this prompt enforces precise,
auditable validation of candidate mappings, supporting robust evaluation of model alignment with
CWE classification.

’_[ Prompt for Judge-CWE-Mapping in VCA ]

INSTRUCTION
You are a cybersecurity expert. Please analyze whether the following atomic behavior has a mapping
relationship with the given {label} entries.

INPUTS

Atomic Behavior: "{atomic_behavior}"

Full Vulnerability Context: "{full_vulnerability }"
{label} Candidates (with similarity scores):

{i}. {entry_label}: {candidate.title}

Description: {candidate.description[:500]}...
Similarity Score: {candidate.similarity_score:.3f}

GUIDELINES
Please analyze each candidate and determine if it has a mapping relationship with the atomic behavior.
Consider:

* Semantic similarity between the atomic behavior and CWE description
* Whether the CWE describes the same type of weakness/vulnerability
» The similarity score (higher scores indicate better matches)

IMPORTANT:

¢ You can select at most one candidate as the best match
¢ If no candidates are suitable, select none
 If multiple candidates are suitable, choose the one with the highest similarity score

OUTPUT
For each candidate, respond with:

e "YES" if it is the BEST match (at most one)
¢ "NO" for all others

Format your response as a JSON array with the same number of elements as candidates, e.g.: ["YES",
"NO", "NO", ...] or ['NO", "NO", "NO", ...] if no match.

OUTPUT
Return only the JSON array.

\. J

The prompt for Decompose Vulnerability is applied in both the ATA and VCA tasks to transform a
textual vulnerability description into a structured set of atomic behaviors.
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Variables in curly braces act as placeholders: {vulnerability_text} denotes the raw vulnerability
description to be analyzed. The output enforces a JSON array of 2—4 atomic behaviors, ensuring the
representation is both concise and actionable.

'—[ Prompt for Decompose Vulnerability in ATA/VCA ]

INSTRUCTION
You are a cybersecurity expert. Analyze the following vulnerability description and identify its core
atomic behaviors.

INPUT
Vulnerability: "{vulnerability_text}"

GUIDELINES

» Extract 2—4 key atomic behaviors that describe the vulnerability itself
Each behavior should be a specific, actionable security issue

Focus on the vulnerability mechanics, not mitigations or solutions
Use clear, concise language describing what the vulnerability does
Avoid splitting into too many granular behaviors

EXAMPLE FORMAT
["behavior 1", "behavior 2", "behavior 3"]

OUTPUT
Return only the JSON array.

The Select-Best-CWE prompt is employed in the VCA task to evaluate whether models can identify
the most appropriate software weakness for a given vulnerability.

Variables in curly braces indicate placeholders dynamically substituted at runtime: {vulnerabil-
ity} provides the full vulnerability text, while {cwe_candidates} supply multiple candidate CWE
entries, each annotated with {idx}, {c.cwe_id}, {c.title}, {c.description}, and a pre-computed
{c.similarity_score}. The model should output a JSON array aligned with the number of candi-
dates, assigning "YES" to the single best match and "NO" to all others.

'_[ Prompt for Select-Best-CWE in VCA ]

INSTRUCTION
You are a cybersecurity expert. Select which CWE best matches the COMPLETE vulnerability de-
scription below.

INPUT

Vulnerability Description: "{vulnerability }"
CWE Candidates to compare:

{idx}. CWE-{c.cwe_id}: {c.title}
Description: {c.description[:500]}...
Similarity Score: {c.similarity_score:.3f}

OUTPUT
Respond as a JSON array with exactly {len(cwe_candidates)} elements in order where only the best
candidate is "YES": ["YES", "NO", ...]

OUTPUT
Return only the JSON array.
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E BLOGCLUSTER ANNOTATION PROCEDURE

The BlogCluster dataset organizes unstructured CTI reports into clusters of adversaries, covering
three categories: threat actors, malware families, and campaigns. The construction procedure is as
follows.

Step 1: Topic identification and candidate clustering. Annotators first read each report to identify
its primary topic (threat actor, malware, or campaign). The extracted keyword is then used to search
across the corpus, retrieving other reports where the same entity appears as the main subject. These
are grouped into candidate clusters by adversary type.

Step 2: Alias resolution and metadata reconciliation. Entity names often differ across vendors
(e.g., “APT28,” “Fancy Bear,” “Sofacy”), so annotators normalize aliases to ensure that all references
to the same adversary are grouped together. In addition, inconsistencies in metadata (e.g., labels,
families, or campaign names) are reconciled by reviewing entity descriptions, activity timelines, and
referenced indicators.

Step 3: Validation and cross-verification. Each candidate cluster is manually inspected to verify
topical consistency, with off-topic or ambiguous reports removed. To ensure reliability, two anno-
tators independently perform validation and reconciliation, after which a senior adjudicator reviews
disagreements and confirms the final clusters. Only clusters with at least two reports from different
vendors or perspectives are retained in the BlogCluster dataset.

This procedure ensures that BlogCluster captures accurate, multi-source coverage of adversaries
while resolving vendor-specific variations and maintaining strict quality control.
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