
CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing
Cybersecurity Knowledge Graphs Under Data Scarcity

Yutong Cheng
Virginia Tech

yutongcheng@vt.edu

Osama Bajaber
Virginia Tech

obajaber@vt.edu

Saimon Amanuel Tsegai
Virginia Tech

saimon.tsegai@vt.edu

Dawn Song
UC Berkeley

dawnsong@berkeley.edu

Peng Gao
Virginia Tech

penggao@vt.edu

Abstract—Textual descriptions in cyber threat intelligence
(CTI) reports, such as security articles and news, are rich
sources of knowledge about cyber threats, crucial for orga-
nizations to stay informed about the rapidly evolving threat
landscape. However, current CTI extraction methods lack
flexibility and generalizability, often resulting in inaccurate
and incomplete knowledge extraction. Syntax parsing relies
on fixed rules and dictionaries, while model fine-tuning
requires large annotated datasets, making both paradigms
challenging to adapt to new threats and ontologies. To bridge
the gap, we propose CTINexus, a novel framework leverag-
ing optimized in-context learning (ICL) of large language
models (LLMs) for data-efficient CTI knowledge extraction
and high-quality cybersecurity knowledge graph (CSKG)
construction. Unlike existing methods, CTINexus requires
neither extensive data nor parameter tuning and can adapt to
various ontologies with minimal annotated examples. This is
achieved through: (1) a carefully designed automatic prompt
construction strategy with optimal demonstration retrieval
for extracting a wide range of cybersecurity entities and
relations; (2) a hierarchical entity alignment technique that
canonicalizes the extracted knowledge and removes redun-
dancy; (3) an ICL-enhanced long-distance relation prediction
technique to further complete the CKSG with missing links.
Our extensive evaluations using 150 real-world CTI reports
collected from 10 platforms demonstrate that CTINexus
significantly outperforms existing methods in constructing
accurate and complete CSKGs, highlighting its potential
to transform CTI analysis with an efficient and adaptable
solution for the dynamic threat landscape.

Index Terms—Threat Intelligence, Large Language Model,
In-Context Learning, Cybersecurity Knowledge Graph

1. Introduction

Modern cyberattacks are becoming increasingly com-
plex and rapidly evolving. Many public and commercial
organizations extensively record and share cyber threat
intelligence (CTI) on their platforms to combat evolving
threats. According to Gartner, CTI is defined as “evidence-
based knowledge, including context, mechanisms, indica-
tors, implications and actionable advice, about an existing
or emerging menace or hazard to assets that can be used
to inform decisions regarding the subject’s response to
that menace or hazard” [60]. Such knowledge is crucial
for organizations to monitor the rapidly evolving threat
landscape, promptly detect early signs of an attack, and

effectively contain the attack with proper measures. Given
its importance, CTI has been increasingly collected and
exchanged across organizations, often in the form of Indi-
cators of Compromise (IOC) [56]. IOCs are forensic arti-
facts of an intrusion such as virus signatures, IPs/domains
of botnets, MD5 hashes of attack files, etc. However,
recent studies [56], [77] showed that knowledge offered
by IOCs is rather limited, which covers only a limited set
of knowledge and has a short lifespan.

Recognizing the limitations of IOCs, recent research
has shifted towards automatically extracting richer knowl-
edge from textual threat descriptions in CTI reports (i.e.,
CTI text). These reports, such as security blog arti-
cles [22], [6] and news [10], [20], are produced by security
researchers and practitioners and published on websites,
summarizing threat behaviors in natural language. Besides
IOCs, these reports contain various other cybersecurity
entities, such as malware, vulnerabilities, and attack tech-
niques, as well as their relationships, illustrating their
interactions and dependencies. This knowledge is crucial
for building a comprehensive cyber threat profile.

Several approaches have been proposed for automat-
ically extracting security knowledge from CTI text and
constructing a cybersecurity knowledge graph (CSKG).
Syntax parsing-based approaches [43], [39], [56] lever-
age fixed dependency rules and hand-crafted dictionar-
ies to parse the grammatical structure of sentences and
extract key subject-verb-object triplets. Fine-tuning-based
approaches [71], [55], [30] leverage pre-trained trans-
former models and fine-tune them on labeled CTI text
datasets to identify semantic roles and extract entities
and relations. However, all these existing methods suffer
from several key drawbacks (see Section 2.2 for details),
particularly when facing the evolving threat landscape: (1)
Lack of flexibility and generalizability: Many of these
methods are tailored to specific cybersecurity ontologies,
focusing on a fixed set of entities and relation types. They
are difficult to generalize to new ontologies and emerging
threats and terminologies. Fixed rules have limited flexi-
bility to adapt to new patterns and require manual creation
and maintenance. Model fine-tuning, however, requires a
large amount of labeled CTI data. Such data is scarce in
security, especially for new threats that lack annotations.
(2) Information inaccuracy and incompleteness: Due to
the peculiarities of the security context and the lack of
deep analysis, these methods often generate low-quality
CSKGs that are incomplete, inaccurate, and disconnected.
Fig. 1 shows example CSKGs generated by two represen-
tative methods for a real-world CTI report. We can observe
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several issues, including incomplete entities, misidentified
entity boundaries, misaligned entities, missing links, etc.
These low-quality CSKGs limit the ability to obtain a
comprehensive threat profile, hindering the effective use
of CTI to enhance other defensive measures.

These limitations highlight the need for a paradigm
shift in CTI knowledge extraction that enables accurate
knowledge capture in data-limited environments while
adapting to evolving threats. Recent advancements in
LLMs have demonstrated strong capabilities in various
natural language tasks [33], shifting the focus from fine-
tuning to in-context learning (ICL), which requires min-
imal annotated data and no parameter updates. However,
ICL strategies vary in performance, from state-of-the-
art to suboptimal [57]. To address this, we conducted
thorough experiments to identify optimal ICL settings
for CSKG construction. With the optimized ICL strategy,
LLMs can effectively learn from a few examples and adapt
to new tasks with stability and high performance without
requiring model weight updates.

Contributions. We present CTINEXUS, an LLM-powered
framework for automated CTI knowledge extraction and
CSKG construction from CTI reports. Unlike existing
methods limited by generalizability and data demands,
CTINEXUS introduces an optimized-ICL-based pipeline
for data-efficient inference, enabling precise extraction of
diverse cybersecurity entities and relations while adapting
to various ontologies. By leveraging an optimal ICL strat-
egy, CTINEXUS generalizes from selected demonstrations
to perform versatile CSKG construction tasks. In addition
to cybersecurity triplet extraction, CTINEXUS also refines
extracted knowledge to enhance the canonicalization and
completeness of the resulting knowledge graph. As shown
in Fig. 1, the CSKG constructed by CTINEXUS has sig-
nificantly higher quality compared to existing approaches.

CTINEXUS leverages the ICL paradigm of LLMs to
directly extract entity-relation triplets (i.e., ⟨head entity,
relation, tail entity⟩) by analogizing similar demonstration
examples in the prompt construction, eliminating the need
for large amounts of training data or extensive model tun-
ing. Unlike multi-round dialogue approaches, CTINEXUS
performs end-to-end extraction of triplets in a single step
(see Fig. 3), significantly reducing inference token costs.
To ensure the high quality of the extracted knowledge,
CTINEXUS employs a carefully designed prompt tem-
plate and an optimal demonstration retrieval strategy for
automatic prompt construction. This prompt construction
also incorporates the defined ontology for the task domain.
Different ontologies can be easily swapped in, and with
just a few demonstration examples, CTINEXUS can auto-
matically bootstrap and adapt to new threats and tasks.

To canonicalize the knowledge and remove redun-
dancy in entities, we designed a hierarchical entity align-
ment technique, which consists of two phases. In coarse-
grained entity grouping, CTINEXUS assigns entity types
to each entity in the extracted triplets using LLM’s ICL
and groups entities within the same type. This ensures
preliminary categorization and prevents the merging of
textually similar entities that belong to different types.
In fine-grained entity merging, CTINEXUS calculates the
semantic similarity among the grouped entities and merges
those with high similarity. With this hierarchical approach,

CTINEXUS avoids the high costs of querying LLMs for
each entity pair’s similarity.

To further complete the CSKG with implicit relations
for distant entities, we designed a long-distance relation
prediction technique. First, entities with the highest degree
centrality in a subgraph are selected as the central nodes of
that subgraph. Then, CTINEXUS performs ICL-enhanced
implicit relation prediction on these central nodes, condi-
tioned on the input context, to infer connections among
the disjoint subgraphs.
Evaluation. We conducted comprehensive evaluations us-
ing 150 CTI reports from 10 well-recognized CTI sharing
platforms [3], [4], [6], [9], [20], [21], [10], [22], [23],
[25]. CTINEXUS achieved F1 scores of 87.65% in cy-
bersecurity triplet extraction, 89.94% in coarse-grained
entity grouping, 99.80% in fine-grained entity merging,
and 90.99% in long-distance relation prediction. Quali-
tative analysis showed that CTINEXUS constructs more
comprehensive and interconnected CSKGs compared to
TTPDrill [43], EXTRACTOR [71], and LADDER [30].
Quantitatively, CTINEXUS outperforms EXTRACTOR by
25.36% in F1 score for cybersecurity triplet extraction
and LADDER by 19% in cybersecurity entity extraction.
We also explored various prompting strategies and four
backbone models (closed-source models: GPT-3.5, GPT-
4; open-source models: Llama3 and QWen2.5) to identify
the optimal ICL paradigm for CTI knowledge extraction,
providing valuable insights for future research.

2. Background and Motivating Example

2.1. Cyber Threat Intelligence

Although crowd-sourced CTI reports provide valuable
information, their unstructured format significantly hin-
ders their effectiveness. As the number and complexity of
cyberattacks increase, the textual CTI descriptions have
also expanded, creating an urgent need for automated in-
formation extraction from CTI [68]. The extracted knowl-
edge can be used to construct cybersecurity knowledge
graphs (CSKGs), where nodes represent entities and edges
represent relations. Compared to unstructured CTI text,
CSKGs provide a holistic profile for cyber threats, offer
better visualization, and are more amenable to integra-
tion into downstream applications. The construction of
a CSKG typically follows an ontology, which specifies
the entity types and their allowed relations. However,
despite efforts to create multiple security ontologies [44],
[69], [75] covering different aspects of threats, keeping up
with the rapidly evolving threat landscape remains chal-
lenging as new threats, techniques, and tools constantly
emerge. It is nearly impossible to develop a universal
ontology that encompasses all current and future threats.
This underscores the need for CTI knowledge extraction
approaches that can flexibly adapt to different ontologies
and emerging threats with minimal transition effort.

2.2. Limitations of Existing Approaches

Existing CTI knowledge extraction approaches face
several fundamental challenges in adapting to the rapidly
evolving threat landscape. Existing approaches follow two
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Fig. 1: CSKGs extracted by EXTRACTOR, TTPDrill, LADDER, and CTINEXUS for a real-world CTI report.
EXTRACTOR,TTPDrill, and LADDER tend to produce incomplete and fragmented subgraphs, lacking comprehensive
contextual connections. In contrast, CTINEXUS constructs a more integrated and comprehensive CSKG, with key
information extracted and entities linked, providing a clearer and more complete representation of the threat profile.

paradigms: syntax parsing-based and fine-tuning-based.
Syntax parsing-based methods leverage typed dependency
rules to analyze the grammatical structure of a sentence
and extract subject-verb-object (SVO) triplets. For exam-
ple, TTPDrill [43] extracts subject entities and verb rela-
tions in CTI-related sentences as threat actions. iACE [56]
extracts verb relations between IOCs and context terms.
ThreatRaptor [39] extracts verb relations between sub-
ject IOC and object IOC. However, syntax parsing-based
methods have two main drawbacks:

• Domain complexity: The grammatical rules can apply to
any domain. However, CTI text in the security domain
has several peculiarities that can confuse syntax parsing,
leading to inaccurate extraction. Cybersecurity entities
can contain special characters, such as dots in IPv4
addresses, underscores in file names, and slashes in file
paths. These special characters can confuse basic NLP
modules, like sentence segmentation and tokenization,
which syntax parsing relies upon.

• Static nature: These methods rely on fixed syntax rules
and predefined dictionaries to filter out irrelevant in-
formation and canonicalize extracted information. For
example, TTPDrill maps extracted SVOs to a curated
list of threat action terms, while ThreatRaptor uses a
dictionary to canonicalize the extracted relation verbs.
Keeping up with the evolving threat landscape requires
continuous updates and maintenance of these rules and
dictionaries, which is hard to scale.

On the other hand, fine-tuning-based approaches fine-
tune pre-trained neural networks on annotated CTI domain
datasets to perform named entity recognition (NER) and
relation extraction (RE). For example, EXTRACTOR [71]
fine-tunes a pre-trained BERT [72] model with thousands
of annotated CTI sentences, to perform semantic role
labeling to extract subjects, objects, and verb actions.
AttacKG [55] fine-tunes a pre-trained model in the SpaCy
library [41] to recognize entities and extract dependencies.
LADDER [30] fine-tunes different pre-trained transformer
models, including BERT, RoBERTa, and XML-RoBERTa,
on their custom datasets annotated according to their own



ontology for performing NER and RE. However, fine-
tuning-based methods also have several drawbacks:

• Resource requirement: Fine-tuning requires large
amounts of labeled data (i.e., annotated CTI text cor-
pora), and the labeling needs to be aligned with the
targeted ontology. Such annotations are expensive to
obtain, especially for emerging threats. Additionally,
fine-tuning can be computationally expensive if the
backbone model contains lots of parameters.

• Ontology lock-in: Since the models are fine-tuned on
datasets annotated using a specific ontology, they are
difficult to generalize to new ontologies that cover
different entities and relations. Transferring to other
ontologies would require reannotating vast data and
retraining the models.

2.2.1. Motivating Example. We further investigate the
quality of the constructed CSKG by existing approaches
using a real-world CTI report. Fig. 1 illustrates a snippet
of the report titled “RANSOMWARE - AKIRA AND
RAPTURE” published on May 9, 2023, by Avertium [3].
The report provides rich information about the new Akira
ransomware group. We run this CTI text snippet with three
representative approaches, TTPDrill, EXTRACTOR, and
LADDER using their released implementations [24], [7],
[13]. Fig. 1 shows their constructed CSKGs. We observe
that the quality of CSKGs is very low.

• Some triplets have wrong directions. For example, in
EXTRACTOR, “ ransom note” is extracted as the sub-
ject of “leave”, whereas it should be the object.

• Many extracted entities have poor quality. Some are not
meaningful, such as “presence” extracted by TTPDrill.
Others include unnecessary words or combine multi-
ple distinct entities; for example, TTPDrill incorrectly
extracts “registry values” and “ransom note” together
when they should be separate. Similarly, in EXTRAC-
TOR, the victim entities are not properly distinguished
and should be individually separated. Although LAD-
DER’s extracted content is of higher quality compared
to TTPDrill and EXTRACTOR, it often lacks com-
pleteness. For instance, in the context where a “Tro-
jan” targets “WordPress sites”, LADDER only extracts
“WordPress” thereby omitting contextual information
from the original phrase.

• Entities are not aligned. For example, in EXTRACTOR,
“Trojan” and “the ransomware Trojan” refer to the same
object and should be merged or associated. The same
issue is observed in TTPDrill and LADDER.

• Some critical relations are missing. In the text, “the
Akira ransomware group” uses the “ransomware Tro-
jan” to launch the attack. However, since these two
entities are mentioned in different sentences without
explicit relational indicators, all approaches fail to infer
the relationship between them.

As shown in Fig. 1, the CSKG constructed by
CTINEXUS is comprehensive, well-connected, and of
much higher quality, addressing all previous drawbacks.
By leveraging the in-context learning of LLMs, the con-
struction of such a CSKG does not rely on large amounts

of training data and can flexibly adapt to different ontolo-
gies. We describe our approach in Section 4.

2.3. Large Language Models

Recently, LLMs have shown emergent abilities to learn
from just a few demonstration examples in the prompt,
a paradigm known as in-context learning (ICL) [37]. In
the ICL paradigm, the prompt input to the LLM typically
includes three components: (1) an instruction specifying
the task, (2) several demonstration examples containing
ground truth to provide task-specific knowledge, and (3) a
query to the LLM with the expectation of an appropriate
answer. This allows LLMs to adapt to new tasks with
minimal cost using task-specific prompts and demonstra-
tion examples. Multiple studies have shown that LLMs
perform well in various tasks under ICL, such as fact
retrieval [79] and mathematical reasoning [45], [28]. Ad-
ditionally, LLMs have shown promise in different cyber-
security tasks, such as vulnerability detection [38], [59],
patch generation [50], and software fuzzing [81], [61].
However, the use of LLMs for CTI knowledge extraction
and CSKG construction remains largely underexplored.

3. Overview

Fig. 2 illustrates CTINEXUS. CTINEXUS introduces
a novel ICL-based approach for data-efficient CTI knowl-
edge extraction and CSKG construction. Unlike previous
methods, CTINEXUS eliminates the need for extensive
data annotations and parameter tuning, facilitating easy
generalization to different ontologies. CTINEXUS focuses
on constructing a connected and comprehensive CSKG,
enabling entity alignment and long-distance relation in-
ference. CTINEXUS consists of three phases.

Phase 1: Given a CTI report, CTINEXUS first extracts
entity-relation triplets that align with the task ontology.
The kNN-based demonstration retriever embeds the re-
port and the candidate reports in the demonstration set
into a high-dimensional latent space. The retriever then
selects the top-k candidates with the highest similarity
scores. The selected demonstrations are fed into an auto-
matic prompt construction module to create a customized
prompt for the current report. As illustrated in Fig. 2, our
prompt template consists of three sections: an instruction
describing the task, a query containing the input CTI
report, and demonstration examples arranged in a specific
order. Fig. 3 illustrates our carefully designed instruction.
Note that the ontology is incorporated into the instruc-
tion. This design allows different ontologies to be easily
switched, and our automatic prompt construction module
will create a prompt specifically for this ontology and
report, enhancing knowledge extraction performance.

Phase 2: With the extracted triplets, CTINEXUS re-
moves redundancy by merging entities that refer to the
same cybersecurity object using a hierarchical approach.
The coarse-grained entity grouping module assigns types
to entities using an automatically populated ICL prompt
template, as illustrated in Fig. 4. The instruction incorpo-
rates the ontology that defines possible entity types. The
demonstration examples show how to label each entity in
the triplet. The query includes all the triplets to be typed.
Entities assigned the same type are grouped together.
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Fig. 2: Overview of CTINEXUS. CTINEXUS comprises three phases. Phase 1, Security Triplet Extraction, enables end-
to-end extraction of cybersecurity triplets using in-context learning of LLM. Phase 2, Hierarchical Entity Alignment,
reduces the redundancy of CSKG through coarse-grained grouping and fine-grained clustering. Phase 3, Long-Distance
Relation Prediction, connects disjoint subgraphs by identifying central nodes and performing relation inference.

Next, the fine-grained entity merging module embeds all
entities within each group and merges those that exceed
a predefined similarity threshold into a single entity.

Phase 3: To infer missing links between distant enti-
ties, CTINEXUS performs long-distance relation predic-
tion. The central entity identification module selects a
central node in each connected subgraph based on the
node’s degree centrality. Among central nodes, the module
then selects a topic node with the highest importance,
which serves as the main subject of the report. The
central nodes and the topic node are passed to the ICL-
enhanced relation prediction module to infer their implicit
relationships. CTINEXUS automatically constructs an ICL
prompt (illustrated in Fig. 5) to perform this inference.

4. Design of CTINEXUS

4.1. CSKG Ontology

We choose MALOnt for the current implementation,
as MALOnt [69] is the most comprehensive among open-
source ontologies, featuring 33 entity types (17 types and
16 sub-types) and 27 relation types. MALOnt covers a
broad range of entities, such as Account, Action, Threat

Actor, Campaign, Event, Exploit Target, Host, Informa-
tion, Infrastructure, Location, Malware, Person, Software,
System, and Vulnerability, with detailed sub-types under
Indicator and Malware Characteristics. However, note that
CTINEXUS ’s ICL-based pipeline eliminates the need for
parameter tuning on large, ontology-specific training sets,
largely simplifying generalization to other ontologies. If
downstream applications require ontologies not covered
by MALOnt, CTINEXUS can easily switch to a different
ontology. This only requires a few demonstration exam-
ples aligned with the new ontology for each ICL task,
and the ontology defined in a JSON format incorporated
in the prompts (illustrated in Figs. 3 and 4). If the new
ontology is a subset of MALOnt (which is already quite
comprehensive), CTINEXUS can directly adapt by simply
removing unrequired entity types without further actions.

4.2. Cybersecurity Triplet Extraction

Given that CTI text may contain diverse relations
and we want the approach to be adaptable to emerging
threats, we formulate the cybersecurity triplet extraction
module in our pipeline as a semi-open extraction prob-
lem: Entity types are prescribed using MALOnt, as its
coverage is already comprehensive, while relation extrac-
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Your response must be JSON and nothing else."

CTINexus's ICL-Based Threat Information Extraction Multi-Turn QA-Based Threat Information Extraction

Encoded Candidates

Encoded Input

Account

Action
Threat Actor
Campaign
Event
Exploit Target

Host
Information
Indicator
Infrastructure
Location
Malware Characteristic

Malware
Person
Software
System
Vulnerability

Fig. 3: Comparison of CTINEXUS’s ICL-based CTI knowledge extraction (left) and a multi-turn QA-based extraction
(right). CTINEXUS consolidates task descriptions (including applied ontology), k selected demonstrations, and query
into a single instruction for efficient cybersecurity triplet extraction. In contrast, the multi-turn QA paradigm requires
multiple rounds of conversations with multiple prompts to extract different entities and relations, resulting in inefficiency.

tion is modeled as open RE to maximize the coverage.
These approaches transform information extraction tasks
into multi-turn question-answering, leveraging the con-
versational capabilities of LLMs. Fig. 3 illustrates this
paradigm. This method involves creating multiple ques-
tioning prompts for each information type and refining the
responses. However, applying this multi-turn QA formula-
tion to cybersecurity entity and relation extraction requires
numerous lengthy prompts due to the extensive cyberse-
curity ontology that could contain many entity classes. For
N entities in the input CTI, N(N−1)

2 prompts are needed
to extract relations between identified entities, leading to
repetitive content and significant token waste, hindering
scalability. Additionally, the multi-turn paradigm suffers
from confirmation bias [34], as LLMs may confirm with
a non-existing relation after several rounds of dialogue.
These erroneous links can be particularly harmful in the
CTI domain, negatively affecting downstream defense so-
lutions by producing false alarms.

ICL prompt template. To improve efficiency and re-
duce confirmation bias, we develop a kNN-enhanced ICL
paradigm that completes the cybersecurity triplet extrac-
tion process with only one LLM query. As illustrated
in Fig. 3, CTINEXUS extracts all cybersecurity triplets
by automatically populating a comprehensive ICL prompt
template, which comprises the following components:

(1) Instruction: The instruction specifies the task, the
applied ontology, and the required format for the ex-

tracted triplets. Instruction design is critical in LLMs,
as an unclear definition of the task can severely de-
grade the performance. We carefully designed several
versions of the instruction and identified the one pre-
sented in Fig. 3 as the most effective.

(2) Demonstrations: Top-k most relevant examples are
retrieved using the demonstration retriever. Each ex-
ample consists of a CTI report annotated with the
security triplets. These examples are ordered in as-
cending similarity to the input query based on findings
described in Section 5.3.

(3) Query: The input CTI text that needs to be analyzed.

kNN-based demonstration retriever. Multiple stud-
ies [67], [57] have shown that prompt examples selection
can significantly affect LLM’s ICL capacity. One approach
for selecting demonstration examples involves training
a proxy LM to score candidates in the demonstration
set [82]. However, this method requires large amounts of
labeled data, which conflicts with our goal of designing
a data-efficient solution. Recently, a k-nearest neighbors
(kNN) method for selecting the most relevant demonstra-
tion examples based on semantic similarity has proven
effective [57]. This method requires no dataset annota-
tion or model tuning, making it ideal for our purposes.
Specifically, we compute high-dimensional embeddings
for the query and all candidate demonstrations using a pre-
trained embedding model. Among the models explored,



CSKG Ontology

Classify the given triple's subject and object 

into one of the following categories:

{{CSKG Ontology}}

Here are some examples:

Example 1:
"triplet": {

"subject": "CVE-2023-36884", 

"relation": "allowed attackers to craft", 

"object": "Microsoft Office documents"

}

"tagged_triplet": {

"subject": {

"text": "CVE-2023-36884", 

"class": "Vulnerability"},

 "relation": "allowed attackers to craft", 

"object": {

"text": "Microsoft Office documents", 

"class": "Indicator:File"}} 

...

Example k:

...

Account
Action
Threat Actor
Campaign
Event
Exploit Target
Host
Information
Indicator
    File
    IP   
    URL
    Domain
    Registry Key
    Hash
    Mutex
    User Agent
    Email
    Yara Rule
    SSL Certificate
Infrastructure
Location
Malware Characteristic
    Behavior
    Capability
    Feature
    Payload
    Variants
Malware
Person
Software
System
Vulnerability

Please tag the following triplets:

{% for triplet in triples %}

"triplet":: {{ triplet }}

"tagged_triple": """insert your answer here"""

{% endfor %}

Prompt Template

LLM

...

Indicator Vulnerability

Malware Threat Actor

Latent Semantic Space

Ransomware

The ransomware 
Trojan

The Trojan

Industrial 
Spy ransomware

FARGO
FARGO 

ransomware

FiveHands 
Ransomware 
variant

FiveHands

FiveHands 
Ransomware 

Phase 1: Coarse-grained Entity Grouping

Phase 2: Fine-grained Entity Merging

Fig. 4: The design of CTINEXUS’s hierarchical entity alignment. The coarse-grained entity grouping module populates
an ICL prompt to assign entity types to the extracted triplets according to the applied ontology. Entities with the same
type are grouped together. The fine-grained entity merging module then uses an embedding-based technique to merge
semantically similar entities within each group based on a predefined similarity threshold.

text-embedding-3-large yielded the best performance. We
then calculate the cosine similarity between the query em-
bedding and each candidate demonstration’s embedding,
selecting the top-k most similar candidates.

Several studies [57], [37], [62] have pointed out that
the order of demonstration examples can also affect the
performance of ICL. In particular, the model’s prediction
often exhibits a recency bias [58], meaning that LLMs
tend to pay more attention to the demonstration placed
near the query. Also, kNN similarity indicates that if the
demonstration is more similar to the query, LLMs can
better analogize it. To investigate the impact of demonstra-
tion order in the CTI domain, we evaluated various per-
mutations, including random, ascending, and descending
orders (Section 5.3). Our findings indicate that arranging
the demonstration examples in ascending order of their
similarity to the query yields the best performance. This
confirms the recency bias phenomenon in our scenario, as
the demonstration example most similar to the query is
placed at the bottom of the list, closest to the query.

4.3. Hierarchical Entity Alignment

Entity alignment identifies entities with different men-
tions that refer to the same real-world object, a key area in
knowledge graph research [26]. Aligning these mentions
integrates sub-graphs containing complementary knowl-
edge, enhancing the comprehensiveness of the knowledge
graph. Traditional entity alignment techniques rely on
heuristics like string matching and structural similarities,

which fail to capture the underlying semantics or context
of entities and have limited accuracy.

Recent studies [74], [78], [65] have adopted deep
learning-based methods to learn vector representations
(i.e., embeddings) of entities, achieving better accuracy.
However, embedding-based techniques face unique chal-
lenges in our problem domain. In CTI text, entities with
similar embeddings may refer to different concepts, e.g.,
“.akira files” (an IOC) and “Akira” (a threat actor). Be-
sides, comparing the semantic distance between every pair
of entities has a computational complexity of n2, where
n is the total number of entities. This is inefficient when
n becomes large.

To address these challenges, we perform entity align-
ment in a hierarchical way. The coarse-grained entity
grouping module leverages LLM’s ICL ability to assign
types to entities. Entities assigned the same type are then
grouped together as potential candidates for alignment,
narrowing the scope for later fine-grained merging. Fig. 4
illustrates our prompt template. CTINEXUS automatically
creates a customized prompt by assembling k carefully
annotated demonstration examples. Each demonstration
example contains an untagged triplet and a tagged triplet
with subject and object entities assigned type labels. The
query part automatically traverses all triplets generated by
the triplet extraction phase. For each triplet, we add a
placeholder, “tagged_triplet”: “insert your answer here” to
follow the format provided in the demonstration examples,
better guiding the LLM to correctly fill in the answers.

For entities within each group, the fine-grained entity
merging module uses an embedding-based technique to



Fig. 5: The design of CTINEXUS’s long-distance relation prediction. Phase 1 selects central entities (blue) and the
topic entity (yellow) from separate subgraphs based on their degree centrality. Phaes 2 populates an ICL prompt to infer
implicit relations between each central entity and the topic entity.

merge entities with similar semantic representations. The
embedding model is central to this procedure, as its gener-
ated embeddings are used to determine the semantic close-
ness of entities. We evaluated state-of-the-art, general-
purpose text embedding models of various sizes (i.e.,
text-embedding-3-small, text-embedding-3-large) for this
task. Since these models are not specifically pre-trained
on a cybersecurity corpus, we also experimented with
a security-specific embedding model, SecureBERT [27],
which has been pre-trained on millions of cybersecurity
websites, articles, and books. Another aspect to consider
is the similarity threshold (degree of closeness) for deter-
mining alignment. To find the optimal threshold value, we
experimented with common threshold values in semantic
similarity comparison [66]: 0.4, 0.5, 0.6, and 0.7. Our
results indicated that 0.6 is the most effective value.
Detailed results and discussions are in Section 5.4.1.

4.4. Long-Distance Relation Prediction

After entity alignment, the triplets form a set of dis-
connected subgraphs, leaving implicit relations between
distant entities unidentified. Previous methods primarily
rely on graph structure learning and graph neural net-
works [86], [48] to perform link prediction. However,
these methods require large amounts of annotated graph

data for model training. Additionally, in the CTI anal-
ysis domain, establishing relationships between distant
cybersecurity entities requires a deep natural language
understanding of their corresponding context. To make the
procedure more data-efficient, we develop a long-distance
relation prediction technique leveraging the ICL ability of
LLMs. Fig. 5 illustrates our design.

Creating links for every pair of distant entities would
introduce excessive connections, complicating the CSKG
and consuming significant computational resources. Thus,
CTINEXUS first runs a depth-first search to find all
connected subgraphs. Then, CTINEXUS leverages graph
structure information to identify a central entity for each
subgraph. A central entity represents the most important
entity in the subgraph and will be the head for inter-
subgraph connections. In our design, we identify central
entities based on their degree centrality [84], which is
the most widely used measure of a node’s importance
in a graph. It is easy to calculate, by counting the total
number of edges that a node has to other nodes. The
intuition is that an entity with the most explicit relations
with other entities is more likely to be the core subject of
that part of CTI text. Among all identified central entities,
we further identify a topic entity, which is the one with
the highest degree, representing the core subject of the
entire CTI report. Specifically, we consider both incoming



and outgoing edges when calculating degree centrality
to identify the central identity. If multiple entities have
the same highest score, we further prioritize out-degree
over in-degree, as subjects in triplets (e.g., “Androxgh0st”
in <“Androxgh0st”, “targets”, “.env files”>) are generally
more important than objects. If there is still a tie, they
are all determined as central entities. We follow the same
procedure for identifying the topic entity. In the example
shown in Fig. 5, there are five subgraphs. We identify
the following central entities: “Victim”, “Akira”, “the ran-
somware Trojan”, “Akira ransomware group”, and “.akira
files”. We select “Akira” as the topic entity, which has the
highest degree centrality score of 6. These central entities
and the topic entity are then fed into the next module for
relation inference.

The ICL-enhanced relation prediction module lever-
ages ICL of LLM to infer implicit relations between
each central entity and the topic entity, creating inter-
subgraph connections. Fig. 5 illustrates our prompt tem-
plate. For each central entity, CTINEXUS automatically
creates a customized prompt by assembling k fixed, care-
fully annotated demonstration examples, similar to the
entity alignment process. The prompt template consists of
two sections: a demonstration section (blue) and a query
section for the target task (yellow). Both sections include
“context”, “question”, and “predicted_triple” components.
The “context” component presents the CTI report, while
the “question” component asks the LLM about the re-
lation between the queried central entity and the topic
entity. The “predicted_triple” component contains the an-
notated relations for the demonstration examples and a
placeholder, “insert your answer here”, for the queried
task. This consistent design across the three components
in both the query and demonstration sections helps the
LLM effectively analogize the demonstration examples,
facilitating better relation inference.

5. Evaluation

To comprehensively study the performance of
CTINEXUS

in various phases of CSKG construction, we set the
following four research questions:

RQ1: How does CTINEXUS’s performance in extracting
cybersecurity entities and relations compare to ex-
isting baseline methods?

RQ2: How well does CTINEXUS perform in cybersecu-
rity triplet extraction?

RQ3: How well does CTINEXUS perform in knowledge
graph construction?

RQ4: What is the efficiency of CTINEXUS?

5.1. Dataset Annotation

Existing datasets benchmark triplet extraction but do
not encompass other procedures in our pipeline, and the
CTI reports they include are mostly outdated. For ex-
ample, the dataset constructed by LADDER is limited
to reports from 2010 to 2021 [30]. To address this, we
created a dataset to evaluate CTINEXUS across cyber-
security triplet extraction, hierarchical entity alignment,

and long-distance relation prediction phases. Our dataset
includes 150 reports from May 2023 onwards, Published
by organizations like Trend Micro, Symantec, and The
Hacker News, it includes 10 sources, averaging 15 reports
each. Annotators with over three years of threat analysis
expertise followed a four-phase process: Phase I involved
annotating all cybersecurity entities and selecting entity
types; Phase II identified explicit relations among entities
and organized them into JSON-formatted triplets; Phase
III grouped entities by type and merged those referring to
the same threat-related concept; Phase IV selected central
and topic entities based on degree and summarized im-
plicit relations. This process resulted in 59,776 mentions,
35,258 entities, and 34,876 relations, enabling an effective
evaluation of CTINEXUS ’s performance in constructing
cohesive and complete CSKGs.

5.2. RQ1: How does CTINEXUS compare against
existing CTI extraction methods?

We evaluate CTINEXUS against two state-of-the-art
baselines: EXTRACTOR [71] and LADDER [30], repre-
senting syntactic analysis-based and fine-tuning-based ap-
proaches, respectively. Several methodological challenges
were addressed to enable fair comparison. For EXTRAC-
TOR, we adapted its output to our broader ontology using
CTINEXUS’s coarse-grained entity grouping module. For
LADDER, we addressed two key differences: (1) LAD-
DER uses a word-level annotation format, where each to-
ken is labeled with its target class. In contrast, our dataset
follows an end-to-end report-to-triplet format, where the
entire report is input, and the label is a set of extracted
triplets. (2) LADDER uses a simplified ontology derived
from MALONT, which includes only 10 entity types, a
subset of the entity types used in our ontology. To facilitate
comparison, we developed scripts to tokenize our data and
convert our manually annotated datasets into LADDER’s
word-level format. To ensure a fair comparison with LAD-
DER, we merged our training set with LADDER’s in a 5:1
ratio, maintaining their original training/validation split.
We also replaced LADDER’s test set with ours to ensure
consistent evaluation on the same data. We compare with
LADDER solely on named entity extraction performance.
The reason is that our method focuses on open relation
extraction, while LADDER targets relation classification
within fixed categories.

Table I demonstrates that CTINEXUS outperforms
EXTRACTOR in all metrics in cybersecurity triplet ex-
traction. The evaluation results in Section 5.3 showed
that GPT-4 outperforms all other backbone models.
Thus, we use GPT-4 as the default backbone model
for CTINEXUS’s implementation. This superior per-
formance can be attributed to several factors. First,
CTINEXUS leverages the robust context understanding
and instruction-following capabilities of LLMs and en-
hances specificity with kNN-selected demonstration ex-
amples for extracting triplets. In contrast, EXTRACTOR
employs general fine-tuning to extract semantic roles not
specific to any ontology, reducing its accuracy in triplet
extraction. Also, the CTI context introduces peculiarities
that lead to errors in EXTRACTOR’s semantic role la-
beling module, which relies on a simple BERT model.
For instance, EXTRACTOR might extract a triplet like



TABLE I: Performance comparison of CTINEXUS and
EXTRACTOR on cybersecurity triplet extraction.

Method F1 Score Precision Recall

EXTRACTOR 62.29 51.62 78.53
CTINEXUS 87.65 93.69 82.34

TABLE II: Performance comparison of CTINEXUS and
LADDER on cybersecurity entity extraction.

Method F1 Score Precision Recall

LADDER 71.13 78.31 73.94
CTINEXUS 90.13 92.00 88.35

⟨“Androxgh0st malware”, “support”, “numerous functions
capable of abusing the Simple Mail Transfer Protocol
(SMTP), such as scanning and exploiting exposed cre-
dentials and application programming interfaces (APIs),
and web shell deployment”⟩, where the object is a long
sentence not suitable as a single entity. The object contains
multiple entities due to misidentified boundaries. Con-
versely, CTINEXUS can comprehend implicit meanings
and transform phrases to be more suitable as entities,
resulting in a triplet like ⟨“Androxgh0st malware”, “sup-
ports”, “functions abusing SMTP”⟩.

Table II demonstrates that CTINEXUS outperforms
LADDER in F1 Score, Precision, and Recall by 26.7%,
17.5%, and 19.5%, respectively. Specifically, LADDER
achieved an F1 Score of 71.13%, Precision of 78.31%,
and Recall of 73.94%, which are slightly lower than
the numbers reported in LADDER’s original evaluation
(75.32%, 79.06%, and 76.98%, respectively). LADDER’s
lower performance on our test data compared to its re-
ported values is likely due to a distribution shift. LAD-
DER’s dataset spans 2015 to 2021, while our data is from
May 2023 onward. This temporal gap may introduce new
patterns, terminologies, or threat vectors that LADDER’s
model struggles to generalize to, even when retrained on
a mix of old and new data. The performance disparity
between LADDER and CTINEXUS can be attributed to
several factors. First, fine-tuning the model in LADDER
may lead to overfitting on the training set. Consequently,
when confronted with unseen entities in the test set, the
model may struggle to recognize them accurately, poten-
tially misclassifying them or recognizing only parts of the
entities. For example, in the sentence “... with a specific
focus on WordPress sites”, LADDER extracts only “Word-
Press” as an application, resulting in ambiguous content.
In contrast, CTINEXUS correctly extracts “WordPress
sites”, which more accurately reflects the original context.
Second, similar to EXTRACTOR, the LADDER model
lacks sufficient contextual understanding. For instance,
in the sentence “The victims include Family Day Care
Services, a Canadian childcare service”, LADDER incor-
rectly identifies “Canadian” as a “B-Location”, whereas
it should be recognized as a descriptive term for the
childcare service. Furthermore, LADDER models relation
extraction as relation classification, limited to ten relation
classes (i.e., closed-world setting). This constraint restricts
the contextual information in the extracted content and
hinders the model’s ability to generalize to new CTI data
containing different or additional relation classes.

TABLE III: Impact of example numbers on CTINEXUS’s
cybersecurity triplet extraction.

Demo. Num. F1 Score Precision Recall InputLen

1 85.05 94.39 77.40 949.95
2 87.65 93.69 82.34 1539.68
3 87.04 93.62 81.31 2138.41
4 86.73 89.55 84.07 2761.38

TABLE IV: Impact of example permutation on
CTINEXUS’s cybersecurity triplet extraction.

Permutation F1 Score Precision Recall

kNN-ascend 87.65 93.69 82.34
kNN-descend 85.82 90.58 81.53

random 84.96 90.29 80.22

5.3. RQ2: How well does CTINEXUS perform in
cybersecurity triplet extraction

To demonstrate the effectiveness of CTINEXUS in
cybersecurity triplet extraction, stemming from the su-
periority of the ICL paradigm and our specific prompt
design, we conducted experiments on different ICL con-
figurations, focusing on three aspects: (1) the number
of demonstration examples, (2) the permutation of these
examples, and (3) the backbone model types. By default,
CTINEXUS uses GPT-4 as the model backbone, selects
the k most similar prompt examples sorting in ascending
order of query similarity.
Impact of prompt example numbers. To investigate
the impact of prompt example numbers, we evaluated 4
configurations: 1, 2, 3, and 4 examples. Our observations
show effectiveness plateau when using 2 or 3 examples,
while input ICL prompt size increases significantly with
more examples. As shown in Table III, increasing the
prompt example number from 1 to 2 improves all metrics,
particularly recall. However, with 3 examples, precision
and F1-score plateau, and recall drops by 1% . With 4
examples, recall improves from 82 to 84%, but precision
drops from 93 to 89%. This contradicts the heuristic
that more examples always improve ICL performance
but aligns with Chandra et al. [32], noting that each
scenario has an optimal number of examples. Additionally,
each additional example increases the input length by
an average of 603 tokens, slowing inference speed and
increasing computational costs. Thus, our implementation
uses two examples in the cybersecurity triplet extraction
phase, balancing effectiveness and efficiency.
Impact of prompt example permutations. To analyze
the effect of the permutation method for selected exam-
ples, we examined three strategies: (1) random selection
and sorting (random), (2) selection based on kNN similar-
ity and sorting in ascending order (kNN-ascend), and (3)
selection based on kNN similarity and sorting in descend-
ing order (kNN-descend). These methods were chosen
to explore the impact of recency bias in LLMs, which
suggests that models give more weight to examples placed
nearer to the query [58]. The random method serves as a
baseline, while kNN-ascend and kNN-descend test the in-
fluence of example order based on similarity. As shown in
Table IV, kNN-ascend outperforms other methods across



TABLE V: Impact of backbone models on CTINEXUS’s
cybersecurity triplet extraction.

Backbone F1 Score Precision Recall

GPT-4 87.65 93.69 82.34
GPT-3.5 76.97 82.37 72.24
Qwen2.5-72B 78.18 80.83 75.71
Llama3-70B 77.85 81.74 74.32

TABLE VI: Impact of example numbers on CTINEXUS’s
coarse-grained entity grouping.

Model Config. Acc Micro-F1 Macro-F1

GPT-3.5 (1-shot) 61.50 74.71 78.50
GPT-3.5 (4-shot) 66.18 78.45 79.86
GPT-3.5 (8-shot) 69.52 80.99 82.16
GPT-3.5 (12-shot) 69.68 81.11 81.95

GPT-4 (1-shot) 76.98 86.27 86.10
GPT-4 (4-shot) 81.02 88.94 87.87
GPT-4 (8-shot) 82.58 89.94 89.24
GPT-4 (12-shot) 81.18 89.05 88.28

all metrics, indicating the presence of recency bias and its
potential for improving results. Consequently, we adopted
kNN-ascend for CTINEXUS and recommend arranging
prompt examples in ascending order of similarity as a
universal strategy for other ICL applications.

Impact of backbone models. The emergence of ICL is
closely associated with the substantial parameter counts
of LLMs. To assess CTINEXUS’s generalizability across
different backbone models, we evaluate its performance on
representative closed-source LLMs, GPT-3.5 and GPT-4,
and leading open-source LLMs, Llama3 and Qwen2.5. As
shown in Table V, CTINEXUS achieves over a 10% im-
provement in both recall and precision when using GPT-4
compared to GPT-3.5-turbo. This underscores the impor-
tance of leveraging larger models to fully exploit ICL’s
potential within CTINEXUS’s framework. For Qwen2.5
and Llama3, due to computational resource limitations, we
deployed their 72B and 70B parameter versions, respec-
tively. As shown in Table V, both Qwen2.5 and Llama3
demonstrate performance generally comparable to GPT-
3.5-turbo. Specifically, Qwen2.5 exhibits a 1.4% higher
recall but a 0.9% lower precision compared to Llama3.
GPT-4 excelled in both precision and recall among all
evaluated backbones. Therefore, all subsequent experi-
ments will employ GPT-4 as the default base model.

5.4. RQ3: How well does CTINEXUS perform in
knowledge graph construction?

5.4.1. Hierarchical Entity Alignment. As described in
Section 4, for entity alignment, we first apply ICL to
perform coarse-grained grouping of entities based on
their types. We then vectorize these entities into high-
dimensional embeddings and conduct fine-grained merg-
ing based on their semantic similarity. In the following, we
present a series of experiments to investigate the impact
of different configurations in entity grouping and entity
merging, aiming to identify the optimal combination.

Impact of demonstration numbers.

TABLE VII: Impact of merging threshold values on
CTINEXUS’s fine-grained entity merging.

Threshold F1 Score Precision Recall EntitiyNum

0.4 90.10 81.99 100 13.32
0.5 95.18 90.80 100 15.13
0.6 99.80 99.61 100 16.62
0.7 96.29 99.58 93.21 17.50

TABLE VIII: Impact of embedding models on
CTINEXUS’s fine-grained entity merging.

Model F1 Score Precision Recall EntitiyNum

SecureBERT 79.15 65.50 100 8.11
text-embedding-3-small 98.10 97.54 98.66 16.50
text-embedding-3-large 99.80 99.61 100 16.62

We assessed the impact of demonstration example
numbers on ICL through comparative experiments with
four example quantities: 1, 4, 8, and 12. Additionally, we
evaluated the performance of two LLMs, GPT-4 and GPT-
3.5, across different model sizes. Notably, the performance
showed no significant improvement once the number of
examples exceeded 12, so these results are excluded from
the table. Our evaluation methodology used accuracy,
macro-F1, and micro-F1 metrics, consistent with previous
text classification studies [63]. The experimental results,
shown in Table VI, indicate that GPT-4 consistently out-
performs GPT-3.5 across all demonstration number hier-
archies. Remarkably, GPT-4 with 1 demonstration yields
better results than GPT-3.5 with 12 demonstrations. Both
models show substantial improvements when increasing
from one to eight demonstrations, but a saturation trend
appears when the number of examples exceeds eight. This
trend is especially evident in GPT-4, where all three met-
rics slightly decrease as demonstration numbers increase
from eight to twelve.
Impact of embedding models and merging threshold.
The entity merging module applies a text embedding
model to vectorize candidate entities grouped by the entity
grouping module and uses a merging threshold to identify
equivalent entities. Our evaluation focuses on the selec-
tion of the embedding model and the determination of
the merging threshold. We use OpenAI’s third-generation
embedding models, text-embedding-3-small and text-
embedding-3-large, which differ in vector size and rep-
resent the latest state-of-the-art general-purpose models.
In addition, we also compare with SecureBERT[27], a
cybersecurity-specific embedding model based on the
RoBERTa architecture pre-trained on a large corpus of
cybersecurity data. We consider merging thresholds of 0.4,
0.5, 0.6, and 0.7. Besides common metrics for entity align-
ment, we introduce Num_ent, which records the number
of entities after alignment.

The experimental results are shown in Table VII
and Table VIII. Threshold values of 0.4, 0.5, and 0.6 all
achieve a 100% recall rate, indicating the algorithm’s abil-
ity to detect all entities that should be merged. However,
lower thresholds can erroneously merge non-equivalent
entities based on the Num_ent and precision metrics. The
highest precision is observed when the merging threshold
is 0.6. Increasing the threshold to 0.7 maintains preci-



TABLE IX: Impact of example numbers on CTINEXUS’s
relation prediction.

Model Config. F1 Score Precision Recall

GPT-3.5 (0-shot) 65.95 51.26 92.42
GPT-3.5 (1-shot) 70.21 55.46 95.65
GPT-3.5 (2-shot) 76.87 63.31 97.84
GPT-3.5 (3-shot) 74.83 61.06 96.46

GPT-4 (0-shot) 85.76 75.07 100
GPT-4 (1-shot) 89.13 80.39 100
GPT-4 (2-shot) 90.99 83.47 100
GPT-4 (3-shot) 89.00 80.11 100

sion but significantly reduces recall, suggesting overly
fine granularity that misclassifies equivalent entities as
distinct. Regarding embedding models, text-embedding-
3-large demonstrates the best performance, with text-
embedding-3-small showing similar results. SecureBERT,
despite its high recall, struggles to correctly cluster enti-
ties, as reflected in its low precision and Num_ent scores.
This may be due to the smaller size of RoBERTa com-
pared to the text-embedding-3 models, leading to less
accurate entity distinction.

5.4.2. ICL-Enhanced Relation Prediction. As men-
tioned in Section 4, we compose ICL prompts to guide
LLMs in inferring relations between disconnected sub-
graphs using the provided examples and context. We
evaluated different ICL settings by varying the number
of demonstration examples (1, 2, and 3) and the sizes of
backbone models. Additionally, we examined the effec-
tiveness of zero-shot learning, where the LLM infers re-
lationships of given entities without demonstration exam-
ples. Zero-shot learning results are excluded from previous
ICL experiments due to poor performance. The better
performance in implicit relation inference compared to
other tasks in CTINEXUS could be that relation prediction
aligns more closely with general NLP tasks. Unlike triplet
extraction or entity alignment, which require domain-
specific knowledge in the cybersecurity context, relation
prediction relies more on LLMs’ general ability to infer
connections between entities based on linguistic cues in
the text. This makes relation prediction less dependent on
specialized domain knowledge and more aligned with the
LLM’s general language understanding capabilities.

Experimental results, shown in Table IX, indicate that
GPT-4 outperforms GPT-3.5 in every setting by a large
margin, achieving a 100% recall rate compared to 92%-
96% for GPT-3.5. The reason for this discrepancy is that
GPT-3.5 has a higher tendency to produce hallucinated
answers, either by not following the required instructions
for the task (e.g., generating relations between entities
not present in the queries) or by not adhering to the
required format (e.g., generating a string instead of the
requested JSON format). Both models show suboptimal
performance with zero-shot learning. Increasing the num-
ber of demonstration examples from 1 to 2 significantly
improves results, but a slight decline is observed with 3-
shot examples. This suggests that while some examples
can enhance performance, too many examples may intro-
duce additional complexity or noise.

5.5. RQ4: What is the efficiency of CTINEXUS?

In this RQ, we assess the average token and time
costs of three modules within CTINEXUS, using GPT-
3.5 and GPT-4 as backbone models. The results, shown
in Table X, indicate that using GPT-4 as the backbone
results in token costs 20-30 times higher than those of
GPT-3.5. Additionally, the time cost of using GPT-4 is
approximately twice as high compared to GPT-3.5 for
each module and the overall pipeline. The ICL-enhanced
relation prediction module is the most computationally
expensive, requiring multiple inferences for each input
CTI. In contrast, the cybersecurity triplet extraction and
hierarchical entity alignment modules have similar token
costs, approximately half that of the long-distance relation
prediction module, as they adhere to the “one input,
one inference” principle, making them more economical.
Specifically, for the hierarchical entity alignment module,
the token and time costs are mainly attributed to the
coarse-grained entity grouping module. The fine-grained
entity merging module, which uses the text-embedding-3-
large model, incurs minimal costs ($0.13 per 1M tokens),
resulting in the entire experiment costing less than $0.30.

6. Discussion

Limitations. In CTINEXUS, the demonstrations must be
carefully chosen and of high quality, with correct an-
swers and the required prompt format. This ensures that
CTINEXUS can fully utilize the ICL capability to infer the
correct answers from the provided examples. According
to Zhao et al. [85], CTINEXUS’s performance degrades
significantly if the demonstration set contains incorrect or
misformatted samples. Additionally, although CTINEXUS
can operate in a data-constrained manner, it still requires
a certain amount of labeled data, with a recommended
minimum of 100 samples. Data imbalance within the
demonstration set also affects CTINEXUS’s performance,
as an imbalanced label distribution leads to less diverse
retrieved examples, increasing the likelihood of biased
content generation and reducing overall effectiveness.
Hallucinations in LLMs. Large Language Models
(LLMs) can generate hallucinations, which are plausible
yet factually inaccurate outputs [42], [76]. For instance,
CTINEXUS with GPT-3.5 extracted the incorrect triplet
⟨“July 2022”, “threat actors behind FARGO attacks were
hijacking”, “vulnerable Microsoft SQL servers”⟩ instead
of ⟨“vulnerable Microsoft SQL servers”, “are hijacked
by”, “July 2022”⟩, leading to a complete misplacement
of the subject and object and an incoherent relation.
This issue is more prevalent in smaller models like GPT-
3.5, LLaMA3-70B, and QWen2.5-72B. While potential
solutions include fine-tuning hallucination detection clas-
sifiers or using stronger LLMs for verification, we leave
these challenges for future work. Our current focus is on
CSKG construction under data scarcity, where GPT-4 has
demonstrated reliable performance.
Empowering downstream defenses. Various applications
can be potentially empowered by CTINEXUS. For ex-
ample, the extracted CTI knowledge can be converted
into open formats like STIX [49] (e.g., also via LLMs),
and exchanged in platforms like AlienVault OTX [2], and



TABLE X: Token and time costs of CTINEXUS across different modules.

Ontology-Aligned Security Triplet Extraction Hierarchical Entity Alignment ICL-Enhanced Long-Distance Relation Prediction Pipeline

Input Output Overall Time Input Output Overall Time Time Input Output Overall Time Token Cost Time

CTINEXUS w/ GPT-4 0.0246 0.0117 0.0364 11.0905 0.0158 0.0236 0.0393 26.1590 5.9887 0.0644 0.0083 0.0728 24.2483 0.1485 67.4865
CTINEXUS w/ GPT-3.5 0.0007 0.0006 0.0013 5.9824 0.0008 0.0010 0.0018 10.6606 5.9887 0.0033 0.0005 0.0038 9.5013 0.0069 32.1330

integrated into intrusion detection systems [52], [31]. A
question-answering system can be developed upon the
constructed CSKG using LLM’s retrieval-augmented gen-
eration [73], to provide grounded answers to threat-related
questions. Cyber threat hunting [83] can also potentially
be enhanced. For example, the effort required for manually
constructing threat hunting queries can be reduced by
using LLMs to synthesize or suggest next steps based on
the constructed CSKG and partial user input. We leave
the exploration of these applications for future work.

7. Related Work

In Section 2, we discussed CTI knowledge extraction
works in detail. Here, we discuss additional related work.
CTI services and platforms. There exist several services
that regularly publish updated CTI feeds. For example,
PhishTank [19] and OpenPhish [18] focus on phishing
URLs. Abuse.ch [1] focuses on malware samples and
botnet C&C servers. A key limitation is that they only
provide isolated IOC feeds. There are also several com-
prehensive platforms that allow users to (1) share CTI
data with other members of the community to benefit
from the crowd-sourced knowledge, or (2) systematically
manage their CTI data. These systems often provide web
interfaces for user exploration and APIs for system inte-
gration. For example, AlienVault OTX [2] and IBM X-
Force Exchange [11] are company-owned crowd-sourced
platforms for sharing and searching threat data like IOCs,
malware, and vulnerabilities. MISP [14] is an open-source
platform for sharing, storing, and correlating IOCs of
targeted attacks. OpenCTI [17] is an open-source plat-
form that allows users to structure, store, organize, and
visualize their CTI knowledge and observables. Unlike
CTINEXUS’s automated approach, these platforms require
users to actively participate in the sharing process and
manually contribute CTI data.
Cybersecurity knowledge bases. Several comprehensive
cybersecurity knowledge bases have been created by the
industry. CVE [5] and NVD [16] are two most widely
used vulnerability databases. Several threat encyclopedias
exist (Trend Micro [23], Kaspersky [12], F-Secure [8])
for malware and vulnerabilities. MITRE ATT&CK [15]
is a knowledge base for cyber adversary tactics and tech-
niques based on real-world observations. These knowl-
edge bases are manually created by security experts, and
hence their update frequency is typically low. The scope
of CTINEXUS differs from these systems. Nevertheless,
since these knowledge bases also contain textual CTI de-
scriptions about malware and vulnerabilities, CTINEXUS
can be applied to further structuralize such knowledge.
LLMs for cybersecurity. Recent works have explored
applying LLMs to cybersecurity challenges. Pentest-
GPT [35] investigates LLM capabilities in penetration
testing, revealing that while LLMs can handle fundamen-
tal tasks and use testing tools competently, they struggle

with context loss and attention issues. TitanFuzz [36] in-
troduces an innovative approach for fuzzing deep-learning
libraries using LLMs. It employs a generative LLM for
high-quality seed programs and an infilling LLM for
mutations, significantly improving API and code coverage,
and detects numerous previously unknown bugs. Recent
studies have also explored the use of LLMs in tasks such
as vulnerability detection [38], [59], patch generation [50],
malware detection [29], [70], botnet traffic analysis [53],
[40], and phishing and scam detection [46], [51]. Unlike
these works, CTINEXUS leverages the ICL paradigm of
LLMs for comprehensive CTI knowledge extraction and
CSKG construction.
Other CTI research. Several studies have empirically
examined various aspects of CTI, including understanding
vulnerability reproducibility [64], evaluating the quality
of CTI feeds in terms of volume, timeliness, and cov-
erage [47], [54], and analyzing information inconsisten-
cies [80]. These works offer valuable insights into the
current state of CTI data. In contrast to these empiri-
cal efforts, CTINEXUS focuses on designing an LLM-
empowered approach for automated extraction of CTI
knowledge from CTI reports. The scope is different.

8. Conclusion and Future Work

We proposed CTINEXUS, a new framework lever-
aging ICL of LLMs for efficient and adaptive CTI ex-
traction and CSKG construction. Unlike existing meth-
ods, CTINEXUS requires minimal data and parameter
tuning and can adapt to various ontologies with mini-
mal data annotation. Extensive evaluations demonstrated
CTINEXUS’s effectiveness in extracting comprehensive
knowledge, highlighting its potential to transform CTI
analysis into a data-efficient and adaptable paradigm.

Future directions include integrating CTINEXUS with
downstream applications, such as intrusion detection sys-
tems, penetration testing tools, or cybersecurity question-
answering systems, to enable timely knowledge updates
and ensure factual accuracy in alignment with the evolving
threat landscape.
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Data Availability

Upon acceptance of this paper, all code and datasets
necessary to reproduce the results will be made publicly
available under an open-source license. The code and
data will be shared via a publicly accessible repository
to ensure transparency and facilitate further research in
the field.
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