
NL2LOGIC: AST-Guided Translation of Natural Language into
First-Order Logic with Large Language Models

Rizky Ramadhana Putra1, Raihan Sultan Pasha Basuki2, Yutong Cheng1, Peng Gao1

1Virginia Tech, Blacksburg, VA, USA
2Universitas Ary Ginanjar, Jakarta, Indonesia
{rizky, yutongcheng, penggao}@vt.edu

raihansultan.pashabasuki@students.uag.ac.id

Abstract

Automated reasoning is critical in domains
such as law and governance, where verifying
claims against facts in documents requires both
accuracy and interpretability. Recent work has
adopted a structured reasoning paradigm that
parses first-order logic (FOL) rules from nat-
ural language and delegates inference to au-
tomated solvers. With the rise of large lan-
guage models (LLMs), methods such as GCD
and CODE4LOGIC leverage their reasoning
and code generation capabilities to enhance
logic parsing. However, these approaches suf-
fer from (1) fragile syntax control, due to weak
enforcement of global grammar consistency,
and (2) low semantic faithfulness, as they lack
fine-grained clause-level semantic understand-
ing. To address these challenges, we propose
NL2LOGIC, a FOL translation framework that
uses an AST as an intermediate layer, com-
bining a recursive LLM-based semantic parser
with an AST-guided generator that determinis-
tically produces solver-ready code. On the FO-
LIO, LogicNLI, and ProofWriter benchmarks,
NL2LOGIC attains 99% syntactic accuracy and
improves semantic correctness by 30% over
state-of-the-art baselines. Moreover, integrat-
ing NL2LOGIC into Logic-LM yields near-
perfect executability and improves downstream
reasoning accuracy by 31% over Logic-LM’s
original few-shot unconstrained FOL transla-
tion module.

1 Introduction

Natural language documents, especially in domains
such as law, policy, and governance, encode com-
plex logical relations that must be interpreted pre-
cisely for downstream reasoning and compliance
checking. However, natural language is inherently
ambiguous and unstructured, making it difficult
for machines, and even humans, to ensure logical
consistency, detect contradictions, or verify claims
across documents. This gap has motivated research
on automated reasoning over natural language,

where models assess whether a claim is entailed
by supporting evidence. Early approaches rely on
neural entailment frameworks (Evans et al., 2018;
Bowman et al., 2015; Rocktaschel et al., 2016)
that employ neural networks to classify entailment
and contradiction. However, these models remain
opaque black boxes, lacking interpretability and
formal verifiability. To improve transparency and
explainability, recent research introduces a struc-
tured reasoning paradigm that first derives explicit
logical representations from text and then verifies
claims through automated reasoning engines. This
transition improves inference transparency and au-
ditability by explicitly representing intermediate
proof steps, rather than only final results.

In recent years, Large Language Models (LLMs)
have shown notable progress in logical reasoning,
particularly when guided by prompting strategies
such as few-shot examples and Chain-of-Thought
(CoT) prompting. Building on this progress, recent
research has developed LLM-powered approaches
for translating natural language (NL) into first-
order logic (FOL), leveraging the models’ strong
natural language understanding and code gener-
ation capabilities to enable automated reasoning
with explicit semantics such as FOL.

To improve NL-to-FOL translation performance,
several approaches have developed specialized
pipelines that enhance LLMs with additional struc-
tural guidance and symbolic control. A repre-
sentative work, Grammar-Constrained Decoding
(GCD) (Raspanti et al., 2025), enforces token-level
syntactic correctness by encoding the target formal
language as a context-free grammar and constrain-
ing the LLM’s decoding process to adhere to this
grammar. CODE4LOGIC (Liu, 2025) adopts a
complementary approach. It leverages the code un-
derstanding capability of code generation models.
Rather than generating FOL formulas directly, it
uses few-shot prompting to produce Python code
that encodes the grammar tree, which, when exe-

cuted, generates the corresponding FOL rule.
Despite their contributions, these methods face

two key limitations:

• Fragile syntax control. GCD restricts genera-
tion at the token level through context-free gram-
mars. While this enforces local syntactic correct-
ness, grammatically valid outputs do not neces-
sarily constitute valid logical statements, such as
those requiring variable or signature consistency.
CODE4LOGIC uses in-context learning (ICL) to
generate a grammar tree and guides subsequent
code generation with this structure. However,
despite leveraging ICL, the free-form generation
process remains prone to hallucination, and any
errors in the tree can propagate into the follow-
ing code generation stage, leading to invalid or
inconsistent outputs.

• Limited semantic faithfulness. Existing ap-
proaches formulate NL–to–FOL translation as
a single-step text-to-text task, mapping entire
paragraphs to complete logical programs and
forcing models to perform comprehension and
translation simultaneously. Handling each clause
iteratively is essential, as clauses often encode
complex logical relations that can overwhelm
the LLM if processed and translated all at once.
Without this iterative decomposition, the LLM
tends to rely on shallow token prediction rather
than genuine logical understanding, making hal-
lucinations more likely when sentence structures
become complex.

To address these limitations, we propose
NL2LOGIC, a framework that translates natural
language sentences into semantically faithful and
syntactically correct logical rules. Rather than
adopting an imprecise, unconstrained, and single-
step approach, the semantic parser decomposes
each sentence into clauses and iteratively extract-
ing first-order logic components (e.g., predicates,
quantifiers, and logical connectives) to construct a
First-Order Logic Abstract Syntax Tree (FOLAST).
Parsing each clause iteratively enables the model to
make controlled, grammar-guided decisions, ensur-
ing clause-level accuracy that composes into a glob-
ally coherent logical representation. Then, the AST-
guided generator ensures syntactic correctness by
deterministically compiling the FOLAST through a
two-pass algorithm: the first pass registers all con-
stants, variables, and relation signatures, while the

second pass assembles scoped expressions follow-
ing solver-specific grammar. This design enforces
strict syntactic validity while preserving semantic
alignment, producing executable logical rules com-
patible with solvers such as Z3 (De Moura and
Bjørner, 2008) and SMT-LIB (Barrett et al., 2010).

We evaluate NL2LOGIC on three widely used
natural language inference (NLI) datasets, FO-
LIO (Han et al., 2024), ProofWriter (Tafjord et al.,
2021), and LogicNLI (Tian et al., 2021), using the
Z3 reasoning engine for consistent formal verifica-
tion. We also integrate NL2LOGIC into Logic-
LM (Pan et al., 2023), a representative neuro-
symbolic framework, demonstrating its practical
value as a modular component.

The evaluation addresses three research ques-
tions: (RQ1) whether the generated formulas are
syntactically valid; (RQ2) whether they preserve
the intended semantics for entailment prediction;
(RQ3) whether the integration of NL2LOGIC im-
proves existing neuro-symbolic systems. Across
twelve models ranging from 0.5B to 27B parame-
ters, NL2LOGIC achieves near-perfect syntax cor-
rectness, improves semantic accuracy by an av-
erage of 30% over the strongest baseline (GCD),
and improves the existing neuro-symbolic frame-
work by 31% on downstream reasoning task over
Logic-LM’s original unconstrained FOL transla-
tion module. These results demonstrate that our
decoupled, AST-based design provides stronger
syntactic control and more faithful semantic align-
ment, advancing automated reasoning over natural
language through formal, interpretable symbolic
representations. To facilitate future research, we
release our implementation at: https://github.
com/peng-gao-lab/nl2logic.

2 Related Work

Natural Language to Formal Logic Transla-
tion. Research on formal logic translation has
evolved across several paradigms. Early rule-based
methods (Bos and Markert, 2005; Zettlemoyer
and Collins, 2012; Barker-Plummer et al., 2009;
Abzianidze, 2017) offer precise control but lack
robustness to linguistic variation. Neural models
later generated logical forms directly from text (Lu
et al., 2022; Cao et al., 2019), improving gener-
alization but struggling with rare operators and
complex syntax. More recently, neuro-symbolic
systems commonly adopt unconstrained few-shot
LLM translation integrated with logic solvers (Pan

https://github.com/peng-gao-lab/nl2logic
https://github.com/peng-gao-lab/nl2logic

et al., 2023; Olausson et al., 2023; Xu et al., 2024;
Sanyal et al., 2022; Quan et al., 2024, 2025). Struc-
tured pipelines that add syntactic constraints (Ras-
panti et al., 2025; Liu, 2025) further improve per-
formance, yet the resulting formulas often remain
semantically unfaithful to the source text.

LLMs for Logical Reasoning. The development
of logical reasoning capabilities in LLMs has seen
significant progress through a range of approaches.
One line of work breaks down complex reasoning
into intermediate steps, often referred to as chain-
of-thought prompting (Wei et al., 2022), while oth-
ers show that simple step-by-step prompting can
yield similar benefits without explicit examples
(Kojima et al., 2022). However, these approaches
lack the formal proof. To address this, some frame-
works combine LLMs with automated reasoning
tools to improve faithfulness (Creswell et al., 2022).
Recent research has further explored integrating
LLMs with symbolic solvers (Wang et al., 2023),
treating LLMs as logical parsers rather than inde-
pendent reasoners. In summary, prior work either
lacks formal proof for logical reasoning or pro-
duces unfaithful logical forms due to overly simple,
unconstrained translation methods.

3 Preliminary

First-Order Logic. First-Order Logic (FOL) is
a formal system for expressing statements about
entities, their properties, and relations (Enderton,
2001). Its syntax comprises constants, variables,
functions, relations, quantifiers (e.g., ∀, ∃), and log-
ical connectives (e.g., ∧, ∨,→, ¬). A well-formed
FOL formula such as ∀x.Human(x)→ Mortal(x)
captures meaning in a precise, machine-verifiable
form. Unlike natural language, FOL enforces strict
grammar, enabling unambiguous interpretation and
compatibility with automated reasoning systems.

Abstract Syntax Tree. An Abstract Syntax Tree
(AST) is a tree-based data structure, commonly
used in compilers and interpreters to represent
the syntactic structure of a program (Alfred et al.,
2007). Each node in an AST corresponds to a
syntactic construct (e.g., operator, expression, dec-
laration), enabling structural analysis and system-
atic code generation. We extend this concept to a
first-order logic AST (FOLAST) defined by the
standard FOL grammar in Fig. 2, serving as a
backend-independent intermediate representation
linking natural language to the generated code that
will be executed by automated reasoning engines.

Reasoning Engines and Target Languages. Auto-
mated reasoning engines such as Z3 (De Moura and
Bjørner, 2008), Prover9 (McCune, 2005–2010),
and SMT-LIB (Barrett et al., 2010) solvers evaluate
FOL statements for satisfiability, entailment, and
consistency. Each engine requires strict, engine-
specific syntax, e.g., Z3’s Python API or SMT-
LIB’s symbolic format. However, these syntactic
forms are rarely observed during LLM pretrain-
ing. Hence, directly generating solver code in an
end-to-end manner leads to high syntax errors and
inconsistent logical structures. Our key insight is
to decouple logical parsing from code generation
by introducing an intermediate AST representation,
which captures the logical structure in an engine-
agnostic form and can then be deterministically
compiled into the target reasoning language. This
separation enforces syntactic correctness, facili-
tates multi-engine generalization, and avoids LLM
hallucinations tied to solver-specific syntax.

4 NL2LOGIC Design

NL2LOGIC adopts a parser-generator architecture
designed to ensure syntactic correctness and seman-
tic faithfulness in translating natural language into
formal logic. As illustrated in Fig. 1, the pipeline
consists of two stages: a semantic parser, which
converts natural language text into a structured first-
order logic abstract syntax tree (FOLAST), defined
by the standard grammar in Fig. 2, and an AST-
guided generator, which compiles the FOLAST
into solver-executable code (e.g., Z3, SMT-LIB).
We next describe each component.

4.1 Preprocessing

Documents are divided into well-defined sentences
leveraging prior work on sentence boundary de-
tection, as directly feeding long paragraphs into
the parser risks hallucination and error propaga-
tion. Instead of rule-based splitting that relies
only on punctuation and heuristics, we adopt SaT
(Frohmann et al., 2024; Minixhofer et al., 2023), a
learning-based model that predicts sentence bound-
aries using contextual and lexical cues. This ML-
based approach distinguishes true sentence end-
ings from punctuation used in abbreviations (e.g.,
U.S., Prof.) or numeric expressions, thereby avoid-
ing fragmentation errors. As a result, each logical
sentence is reliably isolated, providing clean and
accurate input to the semantic parser.

ForAll
x

PARSER

Parser Selector

Atomic Sentence Parser

Quantified Sentence Parser

Logical Sentence Parser

LLM w/ In-
Context Learning

GENERATOR①

② First pass:
collect declaration

③ Second pass:
generate expression

Const: John, Mary
Var: x
Function: Loves

ForAll([x], ...)
Loves(Alice, John)⊕

N
at

ur
al

 L
an

gu
ag

e
Se

nt
en

ce
.

"E
ve

ry
on

e
lo

ve
 Jo

hn
 o

r M
ar

y" recursively parse child node

System Prompt
S

Demonstration
D⊕ ⊕ Input

I = Result
R

Or

Atom
Loves

Var
x

Atom
Loves

Constant
John

Var
x

Constant
Mary

A
ST

.
In

de
pe

nd
en

t o
f r

ea
so

ni
ng

 e
ng

in
e

R
ea

so
ni

ng
 E

ng
in

e'
s C

od
e

In
 sp

ec
ifi

c
ta

rg
et

 la
ng

ua
ge

 (e
.g

.,
Z3

,
Pr

ov
er

9,
 P

yP
ro

ve
r,

SM
T-

LI
B

)

Figure 1: Overview of NL2LOGIC. The semantic parser (1) takes a natural language sentence and outputs a
first-order logic abstract syntax tree (FOLAST) through a recursive, top-down approach. The AST is then compiled
into the reasoning engine’s target language through a two-pass algorithm. The first pass (2) collects constant,
variable, and predicate signature declarations. The second pass (3) generates the concrete logical expression.

⟨Term⟩ ::= ⟨V ariable⟩ | ⟨Constant⟩

⟨Atomic⟩ ::= RelationName(⟨Term⟩)
| RelationName(⟨Term⟩, ⟨Term⟩)
| RelationName(⟨Term⟩, ⟨Term⟩, ⟨Term⟩)

⟨Quantified⟩ ::= ∀⟨V ariable⟩. ⟨Formula⟩
| ∃⟨V ariable⟩. ⟨Formula⟩

⟨Logical⟩ ::= ¬⟨Formula⟩
| ⟨Formula⟩ ∧ ⟨Formula⟩
| ⟨Formula⟩ ∨ ⟨Formula⟩
| ⟨Formula⟩ → ⟨Formula⟩

⟨Formula⟩ ::= ⟨Atomic⟩
| ⟨Quantified⟩
| ⟨Logical⟩

Figure 2: Formal notation of abstract syntax tree (AST)

4.2 Semantic Parser

The semantic parser is the first and most critical
stage of NL2LOGIC. It maps natural language
sentences into a first-order logic abstract syntax
tree (FOLAST; described in Section 3) that strictly
enforces logical grammar. Without this stage, di-
rectly prompting an LLM to generate FOL symbols
or solver-specific code (e.g., Z3, SMT-LIB) often
yields syntax errors, hallucinations, or undeclared
variables. This is demonstrated in our evaluations
(Section 5) and caused by such formats are rarely
observed during pre-training. By isolating parsing
as a dedicated component, we guarantee that natu-
ral language is first converted into a syntactically
valid and semantically transparent representation.

Conventional NLP parsers (e.g., dependency or
constituency parsers) are inadequate for translating
NL into formal logic. Rule-based parsers (Woods,
1970; Marcus, 1978) fail to capture the diversity
and ambiguity of natural sentences, while conven-

Rina is either a student who is unaware that caffeine is a
drug, or she is not a student and is aware that caffeine is
a drug

(a) The parser decomposes a sentence containing a logical
operator into its operator and operand(s).

- Rina is a student who is unaware that caffeine is a drug
- Rina is not a student and is aware that caffeine is a drug

(b) The extracted operands are rewritten as standalone sen-
tences. Since they are not necessarily atomic, each operand is
recursively fed back to the parser.

Or

And

AndAtom
Student

Atom
Aware

Not Not

Atom
Student

Atom
Aware

Constant
Rina

Constant
Rina

Constant
Rina

Constant
Rina

(c) The complete AST representation. The parser identifies
only the outermost structure , while the operands are recur-
sively fed back to the parser.

(Student(Rina) ∧ Aware(Rina)) ∨ (¬Student(Rina) ∧
¬Aware(Rina))

(d) The first-order logic rule representation

Figure 3: LogicalSentenceParser example.

tional ML-based parsers (Kitaev and Klein, 2018;
Kitaev et al., 2019) require large annotated corpora
of NL and FOL pairs. In contrast, large language

models (LLMs) can perform in-context learning
(Brown et al., 2020), allowing them to follow
explicit grammar constraints and generate struc-
tured FOLAST outputs. Therefore, an LLM-based
parser is both necessary and practical: it combines
pretrained linguistic knowledge with these formal
grammar constraints to produce accurate and gen-
eralizable logical representations.

Our parser operates recursively through special-
ized sub-modules, as shown in Fig. 1. The Parser
Selector first classifies each sentence as atomic,
quantified, or logical. An atomic sentence ex-
presses a single relation, a quantified sentence in-
troduces a quantifier (e.g., ∀, ∃), and a logical sen-
tence contains logical connectives (e.g., ∧, ∨,→,
¬). Then, the corresponding sub-parser is invoked:
the Atomic Sentence Parser extracts predicates and
arguments; the Quantified Sentence Parser iden-
tifies quantifiers and variables, then recursively
parses the quantified scope; and the Logical Sen-
tence Parser detects operators, splits the input into
operands, and recursively processes each operand.
At each step, the parser focuses only on the out-
ermost construct while delegating the remaining
sub-sentences to recursive parsing calls. This top-
down recursion incrementally builds the AST, mir-
roring the hierarchical composition of FOL expres-
sions. This design limits error propagation, reduces
the LLM’s cognitive load, and maintains semantic
faithfulness across sentences of varying complexity.
The complete system prompts for each parser are
provided in Appendix A.

To illustrate the recursive mechanism, Fig. 3
and Fig. 4 present two representative cases, com-
pound and quantified sentences. Fig. 3 shows how
a disjunctive sentence is parsed by identifying the
outermost operator (Or) and recursively decom-
posing its operands, each containing internal con-
junctions and negations. At each step, the parser
enforces local correctness by validating the syntac-
tic and semantic consistency of each node before
integrating it into the higher-level tree. For ex-
ample, it ensures that every predicate has a valid
argument (e.g., Student(Rina)) and that logical
connectives such as And or Not combine clauses
rather than partial phrases. Fig. 4 then illustrates a
quantified structure, where the parser isolates the
quantifier (ForAll), abstracts the variable (x), and
recursively parses its scoped clause into atomic
predicates such as Drink(x) and Dependent(x).
These two examples show how our parser consis-
tently handles different logical forms by decom-

All people who regularly drink coffee are dependent on
caffeine.

(a) The parser decomposes the sentence into its quantifier and
scope.

x that regularly drink coffee are dependent on caffeine

(b) The scope is rewritten such that the quantified subject is
replaced by a variable. Since the scope is not necessarily
atomic, it is recursively fed back into the parser.

For All
x

Implies

Atom
Drink

Atom
Dependent

Var
x

Var
x

(c) The complete AST representation. The parser identifies
only the outermost structure , while the scope is recursively
fed back to the parser.

∀x (Drink(x) → Dependent(x))

(d) The first-order logic rule representation.

Figure 4: QuantifiedSentenceParser example.

posing them into their outermost constructs and
deferring sub-sentences to recursive parsing.

4.3 AST-Guided Generator

The AST-guided generator converts the FOLAST
produced by the parser into solver-ready code (e.g.,
Z3 or SMT-LIB). The generator deterministically
maps each AST node to target-language expres-
sions, mimicking how source-to-source compilers
work (e.g., Cython (Behnel et al., 2010)). Its work-
flow follows a two-pass algorithm: the first pass
traverses the AST to collect all variable, constant,
and relation signature declarations, establishing a
consistent global context; the second pass revisits
each node to emit logical expressions that respect
operator precedence, quantifier scope, and relation
arity. The generator produces executable code in
the reasoning engine’s target language, preserving
syntactic consistency and faithfully reflecting the
logical structure defined by the FOLAST. We de-
scribe each pass below.

The first pass, Declaration Collection, constructs
the symbol table for the target language (Algo-
rithm 1). Each node is visited in preorder: decla-
ration nodes (constants, variables, and relations)

Algorithm 1 First pass to collect declaration in an
AST
Require: N ▷ set of nodes in an AST
Ensure: D ▷ set of declaration
D ← ∅
for n ∈ N do

if n is a variable then
D ← D ∪ {DECLAREVAR(n)}

else if n is a constant then
D ← D ∪ {DECLARECONST(n)}

else if n is a relation then
D ← D ∪ {DECLARERELATION(n)}

else continue

record their signatures in a shared context, while
expression nodes (e.g., And, Or, Not, Implies) are
traversed only to process their children without
generating expressions. Together, these recorded
entries form a declaration environment, a mapping
that registers all identifiers to their declared type
or signature. This environment ensures that every
symbol referenced in the subsequent expression
generation stage (e.g., variable names or predicate
signatures) has been properly introduced.

The second pass, Expression Generation, emits
logical statements in the reasoning engine’s target
language (Algorithm 2). Each AST node is revis-
ited to produce concrete code: constants and vari-
ables map to their declared identifiers, relational
nodes expand into function calls with correct arity,
and logical operators format operands according
to the solver’s grammar. Quantified nodes intro-
duce scoped variables and generate expressions
with explicit bindings, ensuring variable names re-
main unique and properly scoped. All generated
expressions are then added to the solver’s assertion
set (e.g., s.add(...) in Z3). This pass converts
the FOLAST into final executable reasoning rules,
grounding natural language in formal logic.

5 Evaluation

5.1 Evaluation Setup

Baseline. We compare NL2LOGIC against two
representative baselines. The first baseline is
Grammar-Constrained Decoding (GCD) (Raspanti
et al., 2025), a state-of-the-art approach that en-
forces syntactic correctness by encoding the target
formal language as a context-free grammar and
constraining the LLM’s decoding process accord-
ingly. We run GCD using the authors’ released

Algorithm 2 Second pass to generate expression
in an AST

function GENERATEEXPRESSION(r)
if r = atomic sentence then

a← ∅
for x ∈ r.args do

a ← a ∪
GENERATEEXPRESSION(x)

name← r.name
return ATOMICSENTENCE(name, a)

else if r = binary sentence then
a← r.left_operand
a← GENERATEEXPRESSION(a)
b← r.right_operand
b← GENERATEEXPRESSION(b)
op← r.operator
return BINARYSENTENCE(a, op, b)

else if r = negation sentence then
s← r.sentence
n← GENERATEEXPRESSION(s)
return NEGATEDSENTENCE(n)

else if r = quantified sentence then
q ← r.quantifier
s← GENERATEEXPRESSION(r.scope)
return QUANTIFIEDSENTENCE(q, s)

else if r = variable or constant then
return r.name

implementation and follow the original evaluation
protocol.

The second baseline is Logic-LM (Pan et al.,
2023), a representative neuro-symbolic framework
that translates natural language into first-order logic
using few-shot prompting, without explicit syn-
tactic or semantic constraints on the generated
formulas. To evaluate whether NL2LOGIC can
strengthen existing neuro-symbolic systems, we
replace Logic-LM’s original NL-to-FOL transla-
tion component with NL2LOGIC while keeping all
other components unchanged. For this comparison,
we report both executable rate (i.e., whether the
generated FOL formulas are syntactically valid and
solver-executable) and downstream NLI accuracy.

For fairness, we evaluate using the same models
(Gemma, Llama, Mistral, and Qwen) with sizes
ranging from 0.5 to 27B parameters, as shown in
Tables 1 and 3 to 5. For Logic-LM integration, we
maintain the original pipeline but substitute only
the FOL translation component.

Datasets. We use three natural language infer-
ence (NLI) datasets, LogicNLI (Tian et al., 2021),

ProofWriter (Tafjord et al., 2021), and FOLIO (Han
et al., 2024). These datasets are widely used for
NLI (Pan et al., 2023; Morishita et al., 2024) and
first-order logic (FOL) translation tasks (Liu, 2025;
Yang et al., 2024). In total, we use 3,000 premise-
hypothesis pairs. Each premise consists of a set of
sentences, with each sentence corresponding to one
logical rule. The hypothesis is a single sentence
expressible as one logical statement. The sentence
structures are relatively simple, with minimal co-
reference and inter-sentence dependencies. Each
pair is labeled as entailment, contradiction, or
uncertain. To obtain the entailment prediction ŷ,
NL2LOGIC parses the premises p and hypotheses
h to generate executable code for the automated
reasoning engine SOLVER, as defined in Eq. (1).

SOLVER(p, h) =


Ent., p |= h ∧ p ̸|= ¬h,
Cont., p ̸|= h ∧ p |= ¬h,
Unc., otherwise

ŷ = SOLVER(p, h)
(1)

RQs and Metrics. Our evaluations aim to answer
two research questions.

• RQ1: Syntax correctness. We assess whether
NL2LOGIC generates rules that adhere to first-
order logic syntax, as specified in Fig. 2. Syntax
correctness is quantified using the correctness
rate defined in Eq. (2), where Ncorrect is the num-
ber of sentences with correct syntax and Ntotal is
the total number of sentences.

Syntax Correctness Rate =
Ncorrect

Ntotal
(2)

• RQ2: Semantic correctness. Following stan-
dard practice in prior NL-to-FOL work (Ras-
panti et al., 2025; Liu, 2025), we assess se-
mantic correctness through downstream natural
language inference (NLI) accuracy. This indi-
rect evaluation is necessary because FOL expres-
sions admit many truth-equivalent variants (e.g.,
¬(P ∧ Q) ≡ ¬P ∨ ¬Q), making direct com-
parison against a single canonical form imprac-
tical. Each NLI problem consists of premises
and a hypothesis, and correctness is measured as
NL2LOGIC ’s accuracy (Eq. (3)), defined as the
proportion of predictions (ŷi) matching the gold
labels (y).

Accuracy =

∑n
i=1 1(ŷi = yi)

n
(3)

• RQ3: Integration with neuro-symbolic sys-
tems. We evaluate whether NL2LOGIC ’s
AST-guided translation improves existing neuro-
symbolic frameworks that rely on unconstrained
zero-shot or few-shot prompting. Specifically,
we integrate NL2LOGIC into the Logic-LM (Pan
et al., 2023) pipeline by replacing its original
FOL translation module. Performance is as-
sessed using the same two key metrics, which
are syntactic and semantic accuracy.

5.2 RQ1: Syntax Correctness

Result. Table 1 shows that NL2LOGIC consis-
tently outperforms the grammar-constrained de-
coding (GCD) baseline (Raspanti et al., 2025)
across all model families and scales, achieving
near-perfect syntactic correctness (up to 0.99).
The improvement is most pronounced in smaller
models (e.g., Gemma-2-2B, Llama-3.2-1B), where
syntax control is typically fragile. This demon-
strates that NL2LOGIC ’s iterative parser effec-
tively mitigates syntax drift by incrementally con-
structing the abstract syntax tree (AST), thus reduc-
ing the model’s cognitive burden. For larger models
(e.g., Mistral-22B, Qwen-2.5-14B), NL2LOGIC

saturates near 0.99 accuracy, showing that once
local node validity is guaranteed, global syntactic
integrity emerges naturally.

FOLIO LogicNLI

Model GCD NL2
LOGIC

GCD NL2
LOGIC

gemma-2-2b 0.56 0.92 0.25 0.94
gemma-2-9b 0.77 0.98 0.91 0.99
gemma-2-27b 0.81 0.99 0.93 0.99
llama-3.2-1b 0.27 0.99 0.08 0.97
llama-3.2-3b 0.29 0.93 0.28 0.98
llama-3.1-8b 0.13 0.96 0.68 0.98
ministral-8b 0.09 0.99 0.07 0.98
mistral-22b 0.29 0.99 0.46 0.98
qwen-2.5-0.5b 0.14 0.66 0.05 0.80
qwen-2.5-1.5b 0.36 0.87 0.09 0.99
qwen-2.5-3b 0.12 0.81 0.01 0.99
qwen-2.5-7b 0.01 0.94 0.01 0.99
qwen-2.5-14b 0.53 0.92 0.56 0.99

Table 1: Syntax correctness rate. NL2LOGIC consis-
tently outperforms GCD and achieves near-perfect syn-
tax correctness.

Error Analysis. However, errors may still occur
when the LLM produces invalid nodes, rendering
the accumulated AST incorrect. Two types of er-
rors are commonly observed in our experiments.

{"quantifier": {
"quantifier" : { ...

(a) In rare cases, the LLM produces incomplete JSON that
exceeds the maximum token limit.

{"transitive_verb": "kind",
"subject": "sophia",
"object": "" }

(b) The parser applies an incorrect JSON schema for the
sentence “Sophia is kind”, causing the LLM to leave the object
empty. As a result, the generated node is invalid.

Figure 5: Common errors that result in first-order logic
syntax violations.

The first type violates the given JSON output for-
mat entirely, resulting in missing nodes, as illus-
trated in Fig. 5a. Although rare, the LLM may
hallucinate and produce incomplete or unparseable
JSON. The second type conforms to the JSON
schema but leaves required fields empty, resulting
in invalid nodes, such as missing variable names
in Term nodes or relation names in Atom nodes, as
shown in Fig. 5b. Together, these cases account
for less than 5% of all sentences. Error statistics
are summarized in Table 2. We minimized these
errors by employing strong output-control tech-
niques, including the structured output feature in
vLLM (Kwon et al., 2023) and few-shot prompt-
ing (Appendix A) to guide the LLM in producing
structured JSON representations of AST nodes.

Model Missing
Nodes

Invalid
Nodes

Total
Sentences

gemma-2-2b 15 472

7100

gemma-2-9b 1 63
gemma-2-27b 1 24
llama-3.2-1b 127 5
llama-3.2-3b 133 148
llama-3.1-8b 107 97
ministral-8b 100 9
mistral-22b 100 13
qwen-2.5-0.5b 13 1786
qwen-2.5-1.5b 31 392
qwen-2.5-3b 18 530
qwen-2.5-7b 0 173
qwen-2.5-14b 5 224

Table 2: Error analysis on syntax correctness, account-
ing for less than 5% of all sentences.

5.3 RQ2: Semantic Correctness

Result. Table 3 shows that NL2LOGIC improves
performance on natural language inference tasks by
an average of 31% over the grammar-constrained
decoding (GCD) baseline. This gain stems from
NL2LOGIC ’s parser, which incrementally con-

structs the abstract syntax tree (AST) instead of
generating the entire logical rule in one step. The
iterative design lowers the LLM’s cognitive load
when identifying entities, predicates, and logical
connectives, which is particularly advantageous for
smaller models. NL2LOGIC achieves relatively
higher accuracy on LogicNLI than on FOLIO be-
cause LogicNLI contains simpler sentence struc-
tures with clearer connectives and clauses, mak-
ing the top-down parsing approach more natural.
In contrast, on FOLIO, some larger models with
GCD surpass NL2LOGIC, suggesting that exces-
sive structural decomposition may not always be
beneficial, especially for sentences that are not nat-
urally parse-able in a top-down manner.

FOLIO LogicNLI

Model GCD NL2
LOGIC

GCD NL2
LOGIC

gemma-2-2b 0.27 0.35 0.22 0.41
gemma-2-9b 0.53 0.38 0.23 0.37
gemma-2-27b 0.61 0.40 0.24 0.37
llama-3.2-1b 0.17 0.38 0.11 0.33
llama-3.2-3b 0.18 0.36 0.15 0.37
llama-3.1-8b 0.12 0.37 0.17 0.37
ministral-8b 0.16 0.37 0.04 0.38
mistral-22b 0.23 0.38 0.14 0.34
qwen-2.5-0.5b 0.17 0.26 0.12 0.36
qwen-2.5-1.5b 0.19 0.34 0.03 0.41
qwen-2.5-3b 0.08 0.32 0.01 0.35
qwen-2.5-7b 0.01 0.37 0.01 0.34
qwen-2.5-14b 0.34 0.37 0.27 0.35

Table 3: Semantic correctness measured by accuracy on
natural language inference (NLI) tasks.

Observation and Error Analysis. There are two
common semantic errors. First, words with implicit
negation (e.g., unable, unaware, inconsistent) often
confuse the parser. Despite careful prompt design,
the parser sometimes misinterprets them and enters
an infinite recursive parse. For instance, the sen-
tence ’John is unable to walk’ is parsed back
and forth to the sentence ’John is not unable
to walk’, as illustrated in Fig. 6a. Second, sen-
tences with subtle operator ordering often lead to
operator order errors. For example, the sentence
Alice is not a student and does not like coffee is
occasionally parsed with the Not operator preced-
ing And, producing a semantically incorrect AST,
as shown in Fig. 6b.

5.4 RQ3: Integration with Neuro-Symbolic
Systems

To demonstrate NL2LOGIC’s practical value as a
modular component, we integrated it into Logic-

Parsing ’John is unable to walk’
Unary operator parser. Operator: ’Not’
|— Parsing ’John is not unable to walk’

Unary operator parser. Operator: ’Not’
...

(a) Infinite recursion caused by parsing words with implicit
negation.

Not

And

Atom
Student

Atom
Like

Constant
Alice

Constant
Alice

Constant
Coffee

(b) Incorrect operator ordering when parsing sentences with
complex compound sentences. The sentence is "Alice is
not a student and does not like coffee", where And
operator should precede the Not operator.

Figure 6: Common semantic errors.

LM (Pan et al., 2023), a representative neuro-
symbolic framework combining LLMs with sym-
bolic solvers. Logic-LM originally uses few-shot
prompting for FOL translation without explicit syn-
tactic or semantic constraints. We replaced this
module with NL2LOGIC while keeping all other
pipeline components unchanged (Z3 solver, refine-
ment mechanisms, answer selection), isolating the
impact of our AST-guided translation on syntactic
validity and downstream reasoning accuracy.

Table 4 presents executable rate comparison on
ProofWriter (Tafjord et al., 2021) and FOLIO (Han
et al., 2024). Logic-LM’s original few-shot trans-
lation produces highly variable executable rates
(0.01-0.94), with particularly poor performance on
smaller models (e.g., 0.01 for gemma-2-2b, qwen-
2.5-0.5b on ProofWriter). NL2LOGIC achieves
near-perfect executable rate (0.99) across all 13
models and both datasets through iterative AST
construction validating each logical construct in-
crementally.

This syntactic validity improvement translates
into better semantic correctness. Table 5 shows ac-
curacy on executable rules only, where predictions
originate from logic solver execution rather than
backup strategies (random guessing or CoT fall-
back). NL2LOGIC improves Logic-LM’s accuracy
by ∼31% on average. Gains are most pronounced
on smaller models: on ProofWriter, gemma-2-2b
improves from 0.01 to 0.58, llama-3.2-3b from 0.03
to 0.68, qwen-2.5-7b from 0.08 to 0.90, demonstrat-
ing that NL2LOGIC’s structured decomposition re-

duces cognitive load by parsing natural language
into FOL one clause at a time.

ProofWriter FOLIO

Model Logic
LM

NL2
Logic

Logic
LM

NL2
Logic

gemma-2-2b 0.01 0.99 0.07 0.99
gemma-2-9b 0.90 0.99 0.65 0.99
gemma-2-27b 0.94 0.99 0.60 0.99
llama-3.2-1b 0.72 0.99 0.83 0.99
llama-3.2-3b 0.25 0.99 0.38 0.99
llama-3.1-8b 0.90 0.99 0.58 0.99
ministral-8b 0.20 0.99 0.14 0.99
mistral-22b 0.85 0.99 0.65 0.99
qwen-2.5-0.5b 0.01 0.99 0.01 0.99
qwen-2.5-1.5b 0.01 0.99 0.05 0.99
qwen-2.5-3b 0.45 0.99 0.52 0.99
qwen-2.5-7b 0.15 0.99 0.55 0.99
qwen-2.5-14b 0.38 0.99 0.72 0.99

Table 4: Executable rate: Logic-LM original vs. with
NL2LOGIC integration.

ProofWriter FOLIO

Model Logic
LM

NL2
Logic

Logic
LM

NL2
Logic

gemma-2-2b 0.01 0.58 0.21 0.36
gemma-2-9b 0.45 0.85 0.26 0.39
gemma-2-27b 0.60 0.90 0.31 0.41
llama-3.2-1b 0.25 0.47 0.18 0.38
llama-3.2-3b 0.03 0.68 0.14 0.36
llama-3.1-8b 0.40 0.91 0.22 0.38
ministral-8b 0.18 0.75 0.04 0.39
mistral-22b 0.51 0.78 0.26 0.41
qwen-2.5-0.5b 0.01 0.38 0.01 0.26
qwen-2.5-1.5b 0.01 0.48 0.02 0.34
qwen-2.5-3b 0.17 0.37 0.14 0.32
qwen-2.5-7b 0.08 0.90 0.22 0.37
qwen-2.5-14b 0.32 0.86 0.31 0.38

Table 5: Accuracy on executable rules: Logic-LM origi-
nal vs. with NL2LOGIC integration.

6 Conclusion

This paper presents NL2LOGIC, an AST-guided
framework for translating natural language into
first-order logic using large language models
(LLMs). Unlike prior work that treats this task
as free-form text generation with limited con-
trol, NL2LOGIC incrementally constructs the AST
in a top-down manner. This approach provides
stronger control over the LLM output, achieving
near-perfect syntactic correctness, improving se-
mantic accuracy by 30% on LogicNLI, FOLIO,
and ProofWriter datasets, and improving existing
neuro-symbolic system Logic-LM by 31% on both
syntactic and downstream reasoning task accuracy.

Ethical Considerations

Datasets and Models. We rely solely on pub-
licly available datasets and models, without in-
volving human subjects or newly collected data.
No personal, private, or sensitive information is
used. Therefore, this work poses no risks related
to privacy, consent, or data annotation ethics. All
datasets and models are utilized in accordance with
their respective licenses.

Potential Misleading Proof. We envision that
rules generated by NL2LOGIC will be executed
using automated reasoning engines such as Z3,
PyProver, or SMT-LIB to verify a hypothesis
against a set of premises. Although the goal is to
obtain a formally provable answer, the proof must
be interpreted carefully. Given a set of premises P
and a hypothesis Q, P |= Q does not necessarily
imply that Q is proven. If P |= ¬Q also holds,
the result is uncertain instead of entailment. If the
premises themselves are unsatisfiable (e.g., due to
semantic errors during translation), P may entail
any statement. Hence, one must examine all pos-
sible outcomes, which are P |= Q, P |= ¬Q, and
even the satisfiability of P itself.

Use of AI Assistants. We acknowledge the use of
AI assistants for grammar checking. The authors
remain fully responsible for the scientific contribu-
tions, experimental results, and all claims presented
in this paper.

Limitations

Dependencies on Multiple Sentences.
NL2LOGIC converts text into first-order logic,
one sentence at a time. It ensures consistent
predicate arity, constant’ names, and variable’
names across sentences by prompting the LLM to
use the base form of each word, such as the present
tense for verbs and objects without modifiers.
However, certain sentences require contextual
information from adjacent sentences or the entire
text to generate accurate logical representations.
In such cases, NL2LOGIC does not yet handle
co-reference or implicit relational links across
sentences. For instance, given the premise “John is
the father of Alice” and the hypothesis “John is the
parent of Alice,” separate translation would yield
two distinct relations: father and parent. With
full context, however, the predicate father could
instead be expressed as a conjunction of parent
and male.

Reliance on Structured Generations.
NL2LOGIC relies on structured output capa-
bilities available in both commercial APIs
(e.g., OpenAI) and open-source LLM serving
frameworks (e.g., vLLM). It prompts the LLM to
generate JSON outputs following schemas specific
to each parser type. However, not all LLM serving
frameworks support this feature natively. For
instance, llama.cpp requires integration with the
lm-format-enforcer tool to enable structured
output.

Acknowledgments

We would like to thank the anonymous reviewers
for their constructive comments and suggestions.
This work is supported in part by the National Sci-
ence Foundation under grant CNS-2442171. Any
opinions, findings, and conclusions made in this pa-
per are those of the authors and do not necessarily
reflect the views of the funding agencies.

References
Lasha Abzianidze. 2017. Langpro: Natural language

theorem prover. arXiv preprint arXiv:1708.09417.

V Aho Alfred, S Lam Monica, and D Ullman Jeffrey.
2007. Compilers principles, techniques & tools.
pearson Education.

Dave Barker-Plummer, Richard Cox, and Robert Dale.
2009. Dimensions of difficulty in translating natural
language into first order logic. International Working
Group on Educational Data Mining.

Clark Barrett, Aaron Stump, Cesare Tinelli, and 1 oth-
ers. 2010. The smt-lib standard: Version 2.0. In
Proceedings of the 8th international workshop on
satisfiability modulo theories (Edinburgh, UK), vol-
ume 13, page 14.

Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro
Dalcin, Dag Sverre Seljebotn, and Kurt Smith. 2010.
Cython: The best of both worlds. Computing in
Science & Engineering, 13(2):31–39.

Johan Bos and Katja Markert. 2005. Recognising tex-
tual entailment with logical inference. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 628–635.

Samuel R. Bowman, Christopher Potts, and Christo-
pher D. Manning. 2015. Recursive neural networks
can learn logical semantics. In Proceedings of the
3rd Workshop on Continuous Vector Space Models
and their Compositionality, pages 12–21, Beijing,
China. Association for Computational Linguistics.

https://doi.org/10.18653/v1/W15-4002
https://doi.org/10.18653/v1/W15-4002

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, and 12 others. 2020. Language models are
few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc.

Ruisheng Cao, Su Zhu, Chen Liu, Jieyu Li, and Kai Yu.
2019. Semantic parsing with dual learning. arXiv
preprint arXiv:1907.05343.

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2022. Selection-inference: Exploiting large language
models for interpretable logical reasoning. Preprint,
arXiv:2205.09712.

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: an
efficient smt solver. In Proceedings of the Theory
and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, TACAS’08/ETAPS’08,
page 337–340, Berlin, Heidelberg. Springer-Verlag.

Herbert B Enderton. 2001. A mathematical introduction
to logic. Elsevier.

Richard Evans, David Saxton, David Amos, Pushmeet
Kohli, and Edward Grefenstette. 2018. Can neural
networks understand logical entailment? In Interna-
tional Conference on Learning Representations.

Markus Frohmann, Igor Sterner, Ivan Vulić, Benjamin
Minixhofer, and Markus Schedl. 2024. Segment any
text: A universal approach for robust, efficient and
adaptable sentence segmentation. In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 11908–11941,
Miami, Florida, USA. Association for Computational
Linguistics.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhent-
ing Qi, Martin Riddell, Wenfei Zhou, James Coady,
David Peng, Yujie Qiao, Luke Benson, and 1 oth-
ers. 2024. Folio: Natural language reasoning with
first-order logic. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 22017–22031.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3499–3505, Florence, Italy. Association for
Computational Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Junnan Liu. 2025. Few-shot natural language to first-
order logic translation via code generation. In Pro-
ceedings of the 2025 Conference of the Nations of
the Americas Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 10939–10960, Al-
buquerque, New Mexico. Association for Computa-
tional Linguistics.

Xuantao Lu, Jingping Liu, Zhouhong Gu, Hanwen Tong,
Chenhao Xie, Junyang Huang, Yanghua Xiao, and
Wenguang Wang. 2022. Parsing natural language
into propositional and first-order logic with dual re-
inforcement learning. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 5419–5431.

Mitchell Philip Marcus. 1978. A theory of syntactic
recognition for natural language. Ph.D. thesis, Mas-
sachusetts Institute of Technology.

W. McCune. 2005–2010. Prover9 and mace4. http:
//www.cs.unm.edu/~mccune/prover9/.

Benjamin Minixhofer, Jonas Pfeiffer, and Ivan Vulić.
2023. Where’s the point? self-supervised multilin-
gual punctuation-agnostic sentence segmentation. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 7215–7235, Toronto, Canada.
Association for Computational Linguistics.

Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi,
and Yasuhiro Sogawa. 2024. Enhancing reasoning
capabilities of llms via principled synthetic logic cor-
pus. Advances in Neural Information Processing
Systems, 37:73572–73604.

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang,
Armando Solar-Lezama, Joshua Tenenbaum, and
Roger Levy. 2023. LINC: A neurosymbolic approach
for logical reasoning by combining language models
with first-order logic provers. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 5153–5176, Singapore.
Association for Computational Linguistics.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Wang. 2023. Logic-LM: Empowering large
language models with symbolic solvers for faithful
logical reasoning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2205.09712
https://arxiv.org/abs/2205.09712
https://openreview.net/forum?id=SkZxCk-0Z
https://openreview.net/forum?id=SkZxCk-0Z
https://aclanthology.org/2024.emnlp-main.665
https://aclanthology.org/2024.emnlp-main.665
https://aclanthology.org/2024.emnlp-main.665
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/2025.naacl-long.547
https://doi.org/10.18653/v1/2025.naacl-long.547
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
https://aclanthology.org/2023.acl-long.398
https://aclanthology.org/2023.acl-long.398
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248

3806–3824, Singapore. Association for Computa-
tional Linguistics.

Xin Quan, Marco Valentino, Louise A. Dennis, and An-
dre Freitas. 2024. Verification and refinement of nat-
ural language explanations through LLM-symbolic
theorem proving. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2933–2958, Miami, Florida, USA.
Association for Computational Linguistics.

Xin Quan, Marco Valentino, Louise A. Dennis, and An-
dre Freitas. 2025. Faithful and robust LLM-driven
theorem proving for NLI explanations. In Proceed-
ings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 17734–17755, Vienna, Austria. Associa-
tion for Computational Linguistics.

Federico Raspanti, Tanir Ozcelebi, and Mike Holen-
derski. 2025. Grammar-constrained decoding makes
large language models better logical parsers. In Pro-
ceedings of the 63rd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 6: Indus-
try Track), pages 485–499.

Tim Rocktaschel, Edward Grefenstette, Karl Moritz
Hermann, Tomas Kocisky, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention. In
International Conference on Learning Representa-
tions (ICLR).

Soumya Sanyal, Harman Singh, and Xiang Ren. 2022.
FaiRR: Faithful and robust deductive reasoning over
natural language. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1075–1093,
Dublin, Ireland. Association for Computational Lin-
guistics.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3621–3634, Online.
Association for Computational Linguistics.

Jidong Tian, Yitian Li, Wenqing Chen, Liqiang Xiao,
Hao He, and Yaohui Jin. 2021. Diagnosing the
first-order logical reasoning ability through logicnli.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3738–3747.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif
A Saurous, and Yoon Kim. 2023. Grammar prompt-
ing for domain-specific language generation with
large language models. Advances in Neural Informa-
tion Processing Systems, 36:65030–65055.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

William A Woods. 1970. Transition network grammars
for natural language analysis. Communications of
the ACM, 13(10):591–606.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-
Li Lee, and Wynne Hsu. 2024. Faithful logical rea-
soning via symbolic chain-of-thought. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 13326–13365, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi,
and Faramarz Fekri. 2024. Harnessing the power of
large language models for natural language to first-
order logic translation. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6942–
6959, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Luke S Zettlemoyer and Michael Collins. 2012. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
arXiv preprint arXiv:1207.1420.

https://doi.org/10.18653/v1/2024.emnlp-main.172
https://doi.org/10.18653/v1/2024.emnlp-main.172
https://doi.org/10.18653/v1/2024.emnlp-main.172
https://doi.org/10.18653/v1/2025.acl-long.867
https://doi.org/10.18653/v1/2025.acl-long.867
https://doi.org/10.18653/v1/2022.acl-long.77
https://doi.org/10.18653/v1/2022.acl-long.77
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2024.acl-long.720
https://doi.org/10.18653/v1/2024.acl-long.720
https://doi.org/10.18653/v1/2024.acl-long.375
https://doi.org/10.18653/v1/2024.acl-long.375
https://doi.org/10.18653/v1/2024.acl-long.375

A System Prompts

The parser, described in Section 4 and illus-
trated in Fig. 1, iteratively constructs the abstract
syntax tree (AST) by recursively analyzing each
sentence component through specialized submod-
ules: ParserSelector, AtomicSentenceParser,
QuantifiedSentenceParser, and LogicalSen
tenceParser. The ParserSelector determines
the appropriate parser for a sentence, while the
remaining three parsers perform parsing and recur-
sively invoke the ParserSelector for any child
nodes. The system prompt for ParserSelector
is shown in Fig. 7. While the system prompt
for the QuantifiedSentenceParser is shown
in Fig. 8. The LogicalSentenceParser involves
multiple system prompts, as shown in Figs. 9
and 10. AtomicSentenceParser also involves
multiple system prompts, as shown in Figs. 11
to 15.

ParserSelector System Prompt

You are an expert on classifying the sentence
by its overall structure:
A = An atomic logical statement. (no
quantifiers, no logical connectives, no
negation)
B = A quantified logical statement when the
sentence talks about a general rule that
covers many entities.
If the sentence only mentions specific proper
names, or an instances of variable (x,y,z), or
if quantifiers appear only inside part of the
sentence, then it should be classified as A,
C, or D instead.
C = A compound logical sentence, where each
part is connected with logical connectives
such as ’and’, ’or’, ’if...then’, or ’only
if’.
D = A statement that contains literal negation
of another sentence (’not’, ’no’, ’dont’,
’doesnt’). Only look for a literal negation.

Example 1:
Sentence: ’Alice sings.’
Answer: { "answer" : "A"}
...
Now, it is your turn

Input: {input sentence}
Answer:

Figure 7: The system prompt for selecting the appro-
priate parser. The first step in parsing a sentence is to
classify whether it is an atomic, quantified, compound,
or negation logical sentence.

QuantifiedSentenceParser System Prompt

You identified the sentence as a quantified
logical statement.

Task:
1. Select the correct quantifier:
- ForAll (e.g., all, every, each, no one) ->

the logical statement applies to ALL entities
- ThereExists (e.g., some, there is, at least
one, a) -> the logical statement applies to

SOME entities
2. Identify the variable (and all reference)
being quantified (the noun phrase that follows

the quantifier, e.g., "student", "person",
"dog") and replace it with a letter like x, y,
or z.

3. Rewrite the sentence WITHOUT the quantifier,
keeping the variable in place so the sentence
is still natural and understandable. Preserve

the exact wording and capitalization of all
subject and object names. If there is multiple
quantifier, just remove the outermost.

4. If the sentence is ambiguous, you should
rephrase it so that the next parser will
understand whether it is an atomic logical

sentence, or logical sentence with connectives,
or a quantified logical sentence.

Examples:

Input: "All students study hard."

Output: { "quantifier" : "ForAll", "variable"
: "x", "sentence_without_quantifier" : "x
study hard."}

...

Now, it is your turn

Input: {input sentence}

Output:

Figure 8: The system prompt for parsing a quantified
logical sentence. It instructs the LLM to extract the
quantifier, variable, and the scoped logical sentence.

LogicalSentenceParser System Prompt

You parse a sentence into its OUTERMOST
(top-level) logical operator and its two
operands. Always choose the operator that

governs the entire sentence (outermost scope).
Do not parse nested or inner operators here.
Each operand, left and right, are a standalone

and complete sentence, not just a phrase,
meaning it has at least subject and verb/to
be. Output JSON matching:

operator: one of ["Not","And","Or","If",
"OnlyIf","IfAndOnlyIf"]
left_operand: rewrite the left part as a clean,

standalone clause. Preserve the exact wording
and capitalization of all subject and object
names. But, resolve co-reference such as she,

he, it, etc.
right_operand: rewrite the right part as a
clean, standalone clause. Preserve the exact

wording and capitalization of all subject and
object names. But, resolve co-reference such
as she, he, it, etc.

Decide by the main structure of the whole
sentence:

- And: two clauses joined by and.
- Or: two clauses joined by or / either ... or.
- If: conditional “if . . . then . . . ”

(antecedent = left, consequent = right).
- OnlyIf: “P only if Q” (left = P, right = Q;
Q is required for P).

- IfAndOnlyIf: “iff / if and only if / exactly
when / just in case”.

Examples:

Input: "Alice sings and dances." Output:

{"operator": "And", "left_operand": "Alice
sings", "right_operand": "Alice dances"}

...
Now, it is your turn

Input: {input sentence}
Output:

Figure 9: The system prompt for parsing a sentence
involving a binary logical operator. It instructs the LLM
to extract the operator and its two operands.

LogicalSentenceParser System Prompt

You parse a sentence whose top-level operator
is unary negation.

Output JSON matching:
operator: always "Not"
operand : rewrite the sentence without the

outermost negation

Guidelines:

- Always set operator = "Not".
- For the operand, remove only the **outermost**
negation.

- If there are multiple negations, strip just
the outermost one and keep the inner ones.
- Rewrite the operand as a natural, grammatical

sentence.
- Do not add explanations or extra words.
- Return JSON only.

Examples:

Input: "It is not raining."
Output: {"operator": "Not", "operand": "It is
raining"}

Input: "No student is absent."
Output: {"operator": "Not", "operand": "a

student is absent"}

Input: "It is not true that John is

not guilty." Output: {"operator": "Not",
"operand": "John is not guilty"}

Input: "Nobody loves me." Output: {"operator":
"Not", "operand": "Somebody loves me"}

Now, it is your turn

Input: {input sentence}

Answer:

Figure 10: The system prompt for parsing a sentence
involving a negation operator. It instructs the LLM to
extract the sentence excluding the negation.

AtomicSentenceParser System Prompt

You classify an ATOMIC natural-language
predicate into one of:
A = Adjective/property

B = Intransitive verb (takes no object)
C = Transitive verb (takes exactly one object)
D = Ditransitive verb (takes two objects)

Examples:

Input: "Alice is tall."
Output: {"answer":"A"}

Input: "Alice is a student."
Output: {"answer":"A"}

Input: "Alice runs."
Output: {"answer":"B"}

Input: "The baby sleeps."
Output: {"answer":"B"}

...
Now, it is your turn

Input: {input sentence}
Output:

Figure 11: The system prompt for parsing an atomic
logical sentence. It first instructs the LLM to determine
whether the sentence involves an adjective, intransitive
verb, transitive verb, or ditransitive verb predicate.

AtomicSentenceParser System Prompt

You extract the object and its adjective
property from a simple atomic sentence.
Output JSON matching:

adjective: the describing word or phrase. use
the base form with no modifier
obj: the entity being described (keep wording

and capitalization verbatim). use the base
form with no modifier

Rules:
- Handle only atomic adjective/property
sentences (e.g., "Alice is tall", "The dog is

happy").
- Subjects must be individual names or noun
phrases without quantifiers ("all", "every",

"some", "no").
- Adjective may be single word or short phrase
(e.g., "absent", "very tall").

- Do not paraphrase or change casing; copy
terms exactly.
- Ignore tense/negation; just extract subject

and adjective.

Examples:

Input: "Alice is tall."
Output: {"adjective": "tall", "obj": "Alice"}

Input: "student is awesome."
Output: {"adjective": "awesome", "obj":

"student"}

Input: "Bob is very tired."

Output: {"adjective": "very tired", "obj":
"Bob"}

Now, it is your turn

Input: {input sentence}
Answer:

Figure 12: The system prompt for parsing an atomic
logical sentence involving a subject and an adjective. It
instructs the LLM to extract the subject and the adjective
predicate.

AtomicSentenceParser System Prompt

You extract the subject and the main
intransitive verb from a simple atomic
sentence.

Output JSON matching:
verb: the main intransitive verb (copy exactly

as in the input). use the verb base form
subject: the entity performing the action
(keep wording and capitalization verbatim)

Rules:
- Handle only atomic intransitive sentences (a

subject + intransitive verb, with no object,
no quantifier, no negation).
- Subject is a proper name or noun phrase

(e.g., "Alice", "The student").
- Verb must appear exactly as written in the
sentence (respect tense/aspect: "runs", "is

running", "slept").
- Do not paraphrase or alter capitalization.
- Sentences with objects, quantifiers, or

negation are out of scope.

Examples:

Input: "Alice runs."
Output: {"verb": "run", "subject": "Alice"}

Input: "The student sleeps."
Output: {"verb": "sleep", "subject": "The

student"}

Input: "Bob is running."

Output: {"verb": "run", "subject": "Bob"}

Input: "Alice swam."

Output: {"verb": "swim", "subject": "Alice"}

Now, it is your turn

Input: {input sentence}
Answer:

Figure 13: The system prompt for parsing an atomic
logical sentence involving a simple subject and intransi-
tive verb structure. It instructs the LLM to extract the
subject and the verb predicate.

AtomicSentenceParser System Prompt

You extract the subject, the main transitive
verb, and its single object from a simple
atomic sentence.

Output JSON matching:
subject: the entity performing the action

(copy wording and capitalization verbatim)
verb: the main transitive verb. use the verb
base form

obj: the object of the verb (copy wording and
capitalization verbatim). use the base form
in infinitive form

Examples:

Input: "Alice loves Bob."
Output: {"subject": "Alice", "verb": "love",

"obj": "Bob"}

Input: "The student reads a book."

Output: {"subject": "The student", "verb":
"read", "obj": "a book"}

Input: "Bob is watching TV."
Output: {"subject": "Bob", "verb": "watch",
"obj": "TV"}

Input: "Mary wrote a letter."
Output: {"subject": "Mary", "verb": "write",

"obj": "a letter"}

Input: "John loves swimming."

Output: {"subject": "John", "verb": "love",
"obj": "to swim"}

Input: "Doe likes to read a book"
Output: {"subject": "Doe", "verb": "like",
"obj": "to read a book"}

Now, it is your turn

Input: {input sentence}
Answer:

Figure 14: The system prompt for parsing an atomic
logical sentence involving a subject and a transitive
verb. It instructs the LLM to extract the subject, the
verb predicate, and the object.

AtomicSentenceParser System Prompt

You extract the subject, the main ditransitive
verb, its indirect object, and its direct
object from a simple atomic sentence.

Output JSON matching:
subject: the entity performing the action

(copy wording and capitalization verbatim)
verb: the main ditransitive verb. use the base
verb form

indirect_obj: the recipient/beneficiary of
the action (copy wording and capitalization
verbatim). use the infinitive form if needed

direct_obj: the thing being
given/sent/shown/etc. (copy wording and
capitalization verbatim). use the infinitive

form if needed

Examples:

Input: "John gave Mary a book."
Output: {"subject": "John", "verb": "give",

"indirect_obj": "Mary", "direct_obj": "a
book"}

Input: "Alice sent Bob a letter."
Output: {"subject": "Alice", "verb": "send",
"indirect_obj": "Bob", "direct_obj": "a

letter"}
Input: "The teacher showed the students
a picture." Output: {"subject": "The

teacher", "verb": "show", "indirect_obj":
"the students", "direct_obj": "a picture"}

Input: "John gave a book to Mary."
Output: {"subject": "John", "verb": "give",
"indirect_obj": "Mary", "direct_obj": "a

book"}

...

Now, it is your turn

Input: {input sentence}

Answer:

Figure 15: The system prompt for parsing an atomic
logical sentence involving a subject and a ditransitive
verb. It instructs the LLM to extract the subject, the verb
predicate, the direct object, and the indirect object.

	Introduction
	Related Work
	Preliminary
	NL2Logic Design
	Preprocessing
	Semantic Parser
	AST-Guided Generator

	Evaluation
	Evaluation Setup
	RQ1: Syntax Correctness
	RQ2: Semantic Correctness
	RQ3: Integration with Neuro-Symbolic Systems

	Conclusion
	System Prompts

